
architectural guides for bonn > hraban ramm

41

Based on a talk at the TUG

conference 2023 in Bonn, the
article was edited by Karl Berry
and published in TUGboat #44.

Architectural guides for Bonn
Book production with ConTEXt
Henning Hraban Ramm

“Architekturführer der Werkstatt Baukultur Bonn”

Fig. 1. symbolic #0 guide

At the University of Bonn, there is a group of scholars
who care about the modernist buildings that were built
after the second world war, when Bonn was Germany’s
capital. They do research, offer guided tours and also
publish a series of little architectural guides. My pub
lisher colleagues were already involved with them when
they studied German literature in Bonn, so we took over
this series when we founded Dreiviertelhaus publishers
in 2017. As it happened, I took over the design even
earlier, since their designer had no time after becoming
a mother.

The design is rather simple, so I decided to do it in Con
TEXt (instead of InDesign). But the structure of every
booklet is unique, since they have a wide variety in
the contents: Some volumes are about only one build
ing, others about an ensemble or a housing estate or
a themed collection such as “buildings of the univer
sity”; some are by a single author, others collect con
tributions by several authors. That means I must adapt
the table of contents and the structure of titles in every
other volume. (Figure 1 is an example.)



contextgroup > context meeting 2023

42

Design and Layout

Fig. 2. cover images (back and
front)

Since we use many photos from
archives, most pages are blackand
white, as well as the front covers. But
the booklets are printed in color, be
cause we also show current pictures,
and sometimes color is important, for
example with stained glass windows in
churches or other artwork.

For the cover, we try to use one im
age front-to-back, but it’s just not pos
sible for every volume to find a land
scape photo where the important part
of a building is on the righthand side.
Since my setup expects one image, I
glue different photos for front and back
together in such cases. (Figure 2.)

Fig. 3. example spread with
halfpage image

Interior images are often full page,
sometimes even over a double page
spread.

Images that cover the full width or
height of a page need to be a few mil
limeters bigger to avoid problems in pa
per trimming; this is called bleed. This
affects not only full page images, but
everything that touches paper edges.
We also have images that stay within the
type area.

Fig. 4. example spread with
fullpage image

Most images have captions. On full page
images, the caption is moved into the
image and gets a background shadow
to increase readability. (Figure 3.)



architectural guides for bonn > hraban ramm

43

Maps

Fig. 5. city map (with adver
tising for related guides)

There’s another tricky subject in these
architectural guides, namely city maps.

For my architectural guide on the Kyrgyz
capital Bishkek, I got experience with
processing OpenStreetMap data for cus
tom maps.

I’m using Maperitive1, because it allows
for batch processing. Maperitive is writ
ten in .NET, and I run it on my Mac with
Mono. It’s horribly slow, the program
ming interface is severely underdocu
mented, and the latest version is from 2018, but it’s still the best choice and I
somehow manage to get what I want.

What I want is also a custom style with very subdued colors, nearly black and white,
and not many location markers for shops etc. Maperitive uses style sheets that are
somewhat similar to CSS, so you have selectors and style instructions.

The output is SVG, and I use Inkscape to convert it to PDF for inclusion. ConTEXt
LMTX doesn’t need this any more and can process SVG on its own via a MetaPost
conversion. But when I made the latest architectural guide in 2019, this was not yet
possible. Also, I want to postprocess the images, e. g. deleting unnecessary labels.

You might also have read in TUGboat 42:3 that ConTEXt can process OpenStreetMap
data on its own, also via a MetaPost conversion. This is true, but unfortunately not
more than a proof of concept. It can’t handle labels, like street names, so it’s quite
useless for a city map. The colors are ugly, too – that would be easy to change, and
I promised to provide a theme, but the rendering is just not flexible enough: All
paths can only be drawn as single lines, while if you look at other OpenStreetMap
renderers, streets usually have a fill and an outline, and for railway tracks you need a
thick white line with a dashed black line on it. My programming skills don’t suffice to
fix that.

So I stick to my proven workflow for the time being. (Figure 5.)

Setup
I wrote the setup for these architectural guides mostly in 2015, and since then,
plenty has happened – not only has ConTEXt moved to LuaMetaTEX, but also I’ve
learned a lot and can do a bit better, so I found my old code a bit embarrassing
and refactored it, just in time for the upcoming guides that we hope to publish in
2023/24.

1 maperitive.net

https://maperitive.net


contextgroup > context meeting 2023

44

I will leave out all the setups with regard to language, fonts and colors.

Simple page layout

First we define the page size. That’s easy:

\setuppapersize[A6]

The page layout is quite simple, we have no page header and usually don’t need
footnotes.

If you setup a layout in ConTEXt, you should always define the parameters backspace
and width first, then topspace and height. The latter includes header and footer.
You can leave the other areas like margins and edges alone if you don’t need them.

Header and footer setting reflect that we don’t need page headers and the footer
only for page numbers. We need double pages to get the page numbers in the outer
footer, otherwise we couldn’t distinguish left and right pages.

\setuplayout[
backspace=12.5mm, width=80mm,
topspace=12.5mm, height=125mm, % text+footer
header=0mm,footer=10mm,]

\setuppagenumbering[
alternative=doublesided,]

Bleed and trim

Fig. 6. title page with crop
marks, trim box (green) and
bleed box (blue)

Most of our images cover the full page
width, and that means they must bleed.
3 mm is a traditional value; in this
small format, 1 mm probably would be
enough, and if our printshop tells me to
change it, I want to change it in only one
place.

\definemeasure[Bleed][3mm]
\definemeasure[Trim][7.5mm]
\setuplayout[

marking=on, % cut marks
location=middle,
bleedoffset=\measure{Bleed},
trimoffset=-\measure{Trim},]

With regard to printing, we activate cut
marks and center the page on the sheet.
The trim offset is the difference between
sheet and page size as a negative value.
The bleed offset is from the page out
ward as a positive value. It’s the same
on all sides.



architectural guides for bonn > hraban ramm

45

If you would check the outcome so far, you couldn’t find these boxes in the PDF. The
activation is strangely coupled to some PDF viewer settings:

\setupinteractionscreen[
option={doublesided,bookmark},
width=max,height=max, % necessary for Trim/BleedBox

]

This should work now. But what’s the sheet size? We only defined the paper size!
Let’s fix this:

\setuppapersize[A6][A6,oversized]

The oversized option adds 7.5 mm around the A6 page. We could also define that
size explicitely or use the envelope size C6 instead. (Figure 6.)

Preview and print mode

While we need bleed, trim and cut marks in the PDF for the printshop, they might
confuse the authors in the preview version. They’re also not needed for an ebook.

So let’s modeify the settings. It turns out we only need one mode, ‘print’; if activated,
it fixes the page size, bleed and trim; it can also turn off interaction (links, etc.).

Another topic where it makes sense to distinguish between preview and print mode
is image resolution. It makes no sense to send correction PDFs with high resolution
images, and some pictures could use some downsampling even in print mode.

% preview (correction copies)
\startnotmode[print]

\setuppapersize[A6]
\def\Resolution{96}
\setupinteraction[state=start]
\setupexternalfigures[

conversion=lowres.jpg,]
% no bleed/trim settings

\stopnotmode

% print version
\startmode[print]

\setuppapersize[A6][A6,oversized]
\def\Resolution{200}
\setupinteraction[state=stop]
\setupexternalfigures[

conversion=hires.jpg,]
% setuplayout with bleed/trim as above

\stopmode

\setupexternalfigures[
directory={img},



contextgroup > context meeting 2023

46

resolution={\Resolution},
]
\loadluafile[grph-downsample]

This resolution stuff is not (or not yet) a feature of ConTEXt, but handled by some Lua
functions that call GraphicsMagick during the TEX run to reduce the image size.

Color conversion to greyscale is already included in ConTEXt and works the same
way, but here we don’t need a greyscale mode.

Image dimensions

For our image calculations besides resolution, we need a few basic dimensions.

\definemeasure[maxWidth][\paperwidth + \measured{Bleed}]
\definemeasure[maxHeight][\paperheight + 2\measured{Bleed}]
\definemeasure[doubleWidth][2\measured{maxWidth}]
% offsets of images from the type area
\definemeasure[topOffset][\topspace + \headerheight + \measured{

Bleed}]
\definemeasure[bottomOffset][\bottomheight + \footerheight +

\measured{Bleed}]

Where you would use \newdim and \dimexpr in 𝜀-TEX, you should use \define
measure in ConTEXt. My companion article “Calculating covers” in this issue explains
dimension calculations.

Layers for image placement

If you want to place any elements in specific locations, the ConTEXt way is to use
layers.

For images, it makes sense to use full page layers, but we need to distinguish right
and left pages.

\definelayer[bgpicleft][
x=-\measure{Bleed},y=-\measure{Bleed},
width=\measure{maxWidth},height=\measure{maxHeight},

] % incl. bleed
\definelayer[bgpicright][

x=0mm,y=-\measure{Bleed},
width=\measure{maxWidth},height=\measure{maxHeight},

] % incl. bleed
\setupbackgrounds[leftpage] [background=bgpicleft]
\setupbackgrounds[rightpage][background=bgpicright]

After definition, we must assign the layers as backgrounds. It’s possible to use
several layers for one area: background takes a list, left to right is top to bottom.



architectural guides for bonn > hraban ramm

47

Cover layers

Fig. 7. #13 HICOG settlements

For the cover, we need additional layers,
and we can already set up the black bar
as a text background. (Figure 7.)

\definelayer[titlebar][
x=83mm,y=-\measure{Bleed},
width=25mm,
height=\measure{maxHeight},

]
\setupframed[frame=off,offset=
overlay]
\setlayerframed[titlebar][

background=color,
backgroundcolor=

titlebarcolor,
width=25mm,
height=\measure{maxHeight},

]{\strut}

Image placement
Sorry, I won’t show you the implementation of my macros – it’s long, convoluted,
and ugly.

Full page images

The placement command for a full page image looks like this:

\startpostponing[15]
\pagefig

[fig:10544-08]% reference
[rh]% placement code
{Kurpark, 1950er Jahre}% caption
{DA01_10544-08}% image file

\stoppostponing

“Postponing” moves content to a specific page, the page number can be absolute or
relative (+1). Due to expansion and buffering issues it’s not possible to include this
in a macro.

The \pagefig macro is my own; it takes a reference, a placement code, a caption
and the filename of an image. But what does it do?

• decide if we’re on a right or left page
• start an empty “makeup” (special layout page)



contextgroup > context meeting 2023

48

• place the picture on the layer for the left/right page
• clip the picture to fit (placement code defines if height or width are leading)
• place the caption in the footer (usually white on a dark shadow)
• place debugging information (e. g. file name) in the trim area

The code for a double page image looks nearly the same:

\startpostponing[+0]
\doublepagefig

[fig:11390-29]
[lh]
{Blick von Osten}
{DA01_11390-29}

\stoppostponing

This instance was placed between chapters and uses “immediate” postponing (+0).

The macro works similarly to the previous one, except we place the left half of the
picture on the layer for the left page and the right half on the right page, each in
its own makeup. (A multipage makeup would confuse the page numbering.) The
placement code defines the location of the caption.

Halfpage images

The call for an image that does not cover a whole page looks like this:

\topfig
[fig:9251]
[rw]
{Großer Saal}
{IMG_9251}

I love a consistent interface. But the macro works differently:

• decide if we’re on a right or left page
• calculate the actual image dimensions with a Lua function
• decide where to clip (top/bottom) according to placement code
• calculate how much to clip so that the picture fits the line grid
• place it as a float, but move it into the trim area

Why the calculations? I’m using grid setting, even if this is rather questionable with
these pictureheavy booklets. But it implies that all images should “sit” on a grid line,
i. e. a baseline of body text. ConTEXt couldn’t do that on its own. (Only recently, Hans
Hagen extended the options for float placement; it might be easier now.) Also, the
top border of an image should align with the x-height of a text line, but that doesn’t
matter in this case.

The image has a fixed width, namely the page width plus bleed. With proportional
scaling, we know its maximum height. We subtract the space above the type area (4
values) plus bleed. The remainder modulo the line height is what we need to cut.

It would have been also possible to just move the image, without clipping it.



architectural guides for bonn > hraban ramm

49

The simplified float placement then looks like this:

\startplacefigure[
location={top,high},
reference={#1},
title={#3},

]
\offset[

topoffset=-\topOffset,
leftoffset=\measure{leftOffset},

]{%
\clip[

x=0mm,y=\topCut,
width=\measure{maxWidth},
height=\measure{calculatedImgHeight},%

]{%
\externalfigure[#4][width=\measure{maxWidth}]

}%
}%

\stopplacefigure

Shadow captions

Fig. 8. Multiline caption with a
subtle shadow

The shadow behind captions in fullpage images is a MetaPost graphic: A number of
stacked rounded rectangles of slightly increasing size, set to a high transparency
in “multiply” mode, so that the main shape becomes dark and the borders get blurry.

This graphic is set as an overlay and used as a background to the (invisible) caption
frame.

\startuniqueMPgraphic{mpshadow}
mw := BodyFontSize/3;
ox := -0.5 ; % offset x
oy := -0.5 ; % offset y
bx := 1.5mw ; % bleed x (height of the shadow)
by := 1.5mw ; % bleed y (width of the shadow)
rx := 3mw ; % max. corner radius x
ry := 2mw ; % max. corner radius y
steps := 10 ; % number of shadow layers, 10 is a good value
hue := 0.015 ; % 0.02 is a good value



contextgroup > context meeting 2023

50

This is my caption.

If the caption gets really long
and breaks into several lines,
you see the problem of this approach.
Of course you could break the lines
manually and use separate backgrounds…

ycorr := 1mw ; % difference between overlay height and shadow
height

for step = 1 upto steps:
part := (step-1)/steps;
xstep := bx * part ; % current part of bleed
ystep := by * part ;
crx := (rx + rx*part)/2; % current radius
cry := (ry + ry*part)/2;
% points of the rounded rectangle
xa := -xstep + ox;
xb := -xstep + ox + crx;
xc := xstep + ox - crx + \overlaywidth;
xd := xstep + ox + \overlaywidth;
ya := -ystep + ycorr + oy;
yb := -ystep + ycorr + oy + cry;
yc := ystep - ycorr + oy - cry + \overlayheight;
yd := ystep - ycorr + oy + \overlayheight;

fill (xb, ya)---(xc, ya)...(xd, yb)---
(xd, yc)...(xc, yd)---(xb, yd)...
(xa, yc)---(xa, yb)...cycle
withcolor transparent(1, hue, black) ;

endfor;

setbounds currentpicture to OverlayBox ;
\stopuniqueMPgraphic
\defineoverlay[shadow][\useMPgraphic{mpshadow}]
% …
\inframed[frame=off,

background=shadow,



architectural guides for bonn > hraban ramm

51

foregroundcolor=white,
]{This is my caption.}

This was first made for a shadow behind images, and it works well for text while
there’s only one line or if you can make all lines the same width. The example is one
of the few where that wasn’t possible, but I was never satisfied with this solution.

The outline approach

Just recently I found out how to make a shadow that adapts to the font shape. This
uses a LuaMetaFun extension for font outlines. Again, we stack elements with a low
opacity, this time with an increasing outline “rulethickness”.

Fig. 10. Better shadow using
font outlines

The shadow color is somewhat irregular due to overlapping outlines between letters
or letter elements. Maybe it’s possible to combine the paths.

\definecolor[tshade][t=.05,a=1,k=1]
\starttexdefinition ShadowText #1
\startMPcode
steps := 10 ; % number of shadow layers
rulesize := BodyFontSize/steps/3;
for step = 1 upto steps:

draw lmt_outline [
text = "\vbox{\strut #1}",
kind = "fillup",
fillcolor = "tshade",
rulethickness = (step*rulesize),

];
endfor;
% finally, opaque white text on top
draw lmt_outline [

text = "\vbox{\strut #1}",
kind = "fillup",
fillcolor = "white",
rulethickness = 0,

];
\stopMPcode
\stoptexdefinition
% …
\ShadowText{This is my caption.}



contextgroup > context meeting 2023

52

If you use this with big text, it makes sense to add randomized 3 to the lmt_outline
call to make it look a bit more natural.

The LuaMetaFun lmt functions were only introduced in 2021 and are quite fun to
play with. E. g. you can fill an lmt_outline path with an lmt_poisson pattern:


	1 Editorial Note — Editor
	2 Day plan
	3 ConTEXt meeting 2023 — Henning Hraban Ramm
	4 An Editor for Pandoc Types — Massimiliano Farinella
	1. Project MEO in maintenance mode
	2. Long-term conservation of documents
	3. Converting documents: Pandoc
	4. Editing documents in the browser: Prosemirror
	5. Back to MEO and its legacy
	6. An editor for Pandoc types
	7. Pandoc vs. Prosemirror
	8. Conventions and extra features
	9. Technical specs for developers
	10. Dependencies

	5 An Excursion through Pandoc Types — Massimiliano Farinella
	1. An example to get started
	2. The structure of a Pandoc document
	3. Pandoc Blocks
	4. Inlines
	5. Back to blocks
	6. Metadata
	7. That’s it
	8. Not quite…

	6 Hot-Metal Type versus Computer Bits — Willi Egger
	1. Introduction
	2. Why this article?
	3. Movable type
	4. Tools for hand typesetting
	5. Type cases
	6. Line-typesetting machines
	7. Paragraph issues
	8. Vertical spacing issues
	9. Typesetting factories
	10. Conclusions
	11. Considerations
	12. A personal note
	13. Sources

	7 Architectural guides for Bonn — Henning Hraban Ramm
	8 Kaktovik Numerals — Willi Egger
	1. Introduction
	2. A glance at number systems
	3. The Kaktovik digits
	4. Exploring the Kaktovik number system
	5. Examples of calculations
	6. Further information
	7. Hans’s Type-3 font
	8. Conclusion
	9. Links and further information on the Kaktovik number system
	10. Thanks

	9 A Bit of Fun — Willi Egger
	1. The beginning
	2. Production
	3. At the meeting
	4. Conclusion

	10 Gambling with Crypto — Pablo Rodríguez
	1. Why cryptography may help
	2. Fingerprinting contents
	3. Signing documents

	11 Twin Demerits — Hans Hagen & Mikael Sundqvist
	12 MathML — Hans Hagen & Mikael Sundqvist
	13 Abstracts without papers
	14 Participant list of the 17th ConTEXt meeting

