
contextgroup > context meeting 2023

18

An Excursion through Pandoc Types
Massimiliano Farinella

An excursion through the types that constitute Pandoc’s abstract syntax tree.

This is an excursion through Pandoc types, the ele­
ments that constitute the Pandoc abstract syntax
tree (AST), the internal document model used by
Pandoc to convert any text format it supports.

At the time of this writing, the latest version of
Pandoc types1 is 1.23.

1. An example to get started

Every time you convert a document, Pandoc cre­
ates an internal representation of it, before writ­
ing it again in a different format.

If you want to know about its internal represen­
tation, you can export a document in the native
or in the json format. The native format is more
readable and so it’s a good way to learn about the
way Pandoc translates every input format into its
internal types.

Consider this simple text in Markdown, a title fol­
lowed by a short paragraph:

A title

A short text.

Suppose to save it in a simple.md file. Now con­
vert it with:

pandoc -f markdown -t native simple.md

The result is:

[Header
1 ("a-title" , [] , []) [Str "A"

, Space , Str "title"]
, Para
[Str "A" , Space , Str "short" ,

Space , Str "text."]
]

You can also test it with “Try pandoc!” at pan­
doc.org/try/.

If you treat your text snippet as a full blown, stand­
alone document, you can convert it with the -s
option:

pandoc -f markdown -t native -s
simple.md

and you get:

Pandoc
Meta { unMeta = fromList [] }
[Header

1 ("a-title" , [] , []) [Str
"A" , Space , Str "title"]
, Para

[Str "A" , Space , Str "short" ,
Space , Str "text."]
]

It’s the same as above, except for the Pandoc
Meta { unMeta = fromList [] } at the begin­
ning.

1 The current types’ definition can be found at hackage.haskell.org/package/pandoc­types-1.23/docs/Text­Pandoc­Definition.html.

pandoc types > massimiliano farinella

19

2. The structure of a Pandoc
document

The general structure of a Pandoc document is:

Pandoc Meta [Block]

It means that a Pandoc document is made by a
Meta object and a list of Block elements. The
brackets stand for “a list of” or “an array of”.

Since Pandoc is coded in the Haskell programming
language, the native format follows the syntax of
Haskell constructors.

Now let’s focus on the outer pair of brackets of
our example. Header and Para are two kinds of
Blocks, so those brackets actually contain a list
of (two) Block elements.

3. Pandoc Blocks

Pandoc Blocks resemble HTML blocks a lot. For
those familiar with HTML and CSS, just think of
HTML elements that have a default display:
block CSS property.

In TEX terms, think of elements that live in vertical
mode, boxes that stack on top of each other.

Here’s their complete list:

• Plain
• Para
• LineBlock
• CodeBlock
• RawBlock
• BlockQuote
• OrderedList
• BulletList
• DefinitionList
• Header
• HorizontalRule
• Table

• Figure
• Div

Fourteen Blocks. Not too many. You can even
learn them by heart.

3.1 Headers

The following is the constructor of a Header, that
represents a heading – i.e. a title – in your docu­
ment:

Header Int Attr [Inline]

The first parameter, the one after Header, is an
integer and it’s the level of the heading. Level 1
is the highest one. Even though HTML has <h1>
to <h6>, i.e. 6 levels, I don’t think Pandoc puts a
limit to the number of levels.

The second parameter is an Attr, which is a recur­
ring data structure among Pandoc types, and it’s
made of three elements:

• an identifier; the id attribute in HTML, a name
that uniquely identifies an element in the
whole document, or even in a collection of doc­
uments,

• a list of classes; the space­separated words of
the class attribute in HTML; a list of classifica­
tion labels attached to this textual element,

• a list of attributes; they are key­value pairs that
constitute a “hash table” – “associative array”,
“dictionary”, choose the name you prefer –; in
HTML they would be custom attributes whose
names are usually prepended with “data-”;
it’s an additional payload of custom data you
can stick to this element.

All the types that have an Attr are good candi­
dates to carry additional information in your doc­
ument. They provide room for customization and
arbitrary data that is not in the main text, so not
directly interfering with it.

contextgroup > context meeting 2023

20

The third parameter is the actual content of the
heading: a list of Inline elements – remember
brackets stand for “a list of” –; this is the “real”
content, what goes in the main text.

3.2 Paragraphs

The element for a paragraph is named Para; here
is its definition:

Para [Inline]

A paragraph has only one parameter: a list of
Inline elements.

Suppose you want different kinds of paragraphs in
your document, e.g. justified, centered and right
aligned ones. You can’t, because Para has no pa­
rameters to diffentiate a Para from another one.

Well, it’s actually possible, but that kind of extra
information is not carried by the Para elements.

4. Inlines

Header and Para are the main elements whose
contents are a list of Inlines.

If you know a bit of HTML, Inline elements are
easy to understand. In the TEX world, they’d live
in horizontal mode, arranged into lines, usually
forming paragraphs.

Here’s the complete list, with HTML counterparts,
when possible:

• Str
• Emph ()
• Underline (<u>)
• Strong ()
• Strikeout (<s>)
• Superscript (<sup>)
• Subscript (<sub>)
• SmallCaps

• Quoted (<q>)
• Cite
• Code (<code>)
• Space
• SoftBreak
• LineBreak (
)
• Math
• RawInline
• Link (<a>)
• Image ()
• Note
• Span ()

Twenty Inlines. More than the 14 Blocks, but
still not too many.

4.1 Text and spaces

The Space constructor (see the native code in the
example above) has no parameters and it repre­
sents a space or a sequence of spaces, because
Pandoc reduces any sequence of spaces to a sin­
gle space, the same way TeX usually does.

The Str constructor is:

Str Text

where Text is a UTF8-encoded string; usually it’s
a portion of text between two Spaces.

I found it may contain spaces too. This should not
happen when Pandoc reads a file, but you may
create a Str with single or multiple spaces in a
custom filter or reader, like this:

Str "I love spaces"

Pandoc would not complain.

4.2 Styling inlines

A first group of Inline elements have the same
structure:

pandoc types > massimiliano farinella

21

Emph [Inline]
Underline [Inline]
Strong [Inline]
Strikeout [Inline]
Superscript [Inline]
Subscript [Inline]
SmallCaps [Inline]

They are containers of other Inline elements and
their meaning is straightforward.

A similar one is:

Quoted QuoteType [Inline]

where QuoteType can be either SingleQuote or
DoubleQuote. Their meaning should be apparent
too.

4.3 Breaks

The following two Inlines have no parameters:

SoftBreak
HardBreak

The first one is a non­structural line break, like the
single newline that counts as a space in TEX, or the
newline character in the text of an HTML element.

The second one is structural and forces the follow­
ing text to start at the beginning of the next line.
In HTML, it’s a
 element.

4.4 Math from TEX

Math shows its TEX lineage:

Math MathType Text

where MathType can be DisplayMath or
InlineMath.

4.5 Citations

Cite is for citations. I think BibTEX is among its
influences.

Cite [Citation] [Inline]

It represents a portion of inline text associated
to one or more Citations. Every Citation is an
object with six parameters:

citationId :: Text
citationPrefix :: [Inline]
citationSuffix :: [Inline]
citationMode :: CitationMode
citationNoteNum :: Int
citationHash :: Int

4.6 Inlines with attributes

Then comes the group of Attr­carrying Inlines:

Span Attr [Inline]
Link Attr [Inline] Target
Image Attr [Inline] Target
Code Attr Text

Span is the most generic Inline element, with an
Attr that may carry extra information.

Link and Image– think of their HTML counterparts
– have also a Target parameter, which is a pair of
strings: URL and title.

Code is an inline code snippet (a string), with an
Attr parameter useful to store, for example, the
programming language it’s written in.

4.7 An Inline made of Blocks

The only Inline allowed to contain Blocks is

Note [Block]

which usually represents a footnote.

contextgroup > context meeting 2023

22

Pandoc has only one kind of notes, so no footnotes
and endnotes in the same document.

Also note that the contents of footnotes is stored
in the same place where they are referenced;
so, for example, you can’t reference the same
note more than once in the text, the way you
would do with \footnote[fn1]{...} and then
\note[fn1] in ConTEXt.

4.8 Raw material injection

The last Inline is

RawInline Format Text

This is a way to inject custom text, tags or even
binary code in your output. The second parameter
specifies what is to be injected, but only when
the output format is the one specified by the first
parameter.

When you make a conversion with an output for­
mat that does not match the Format parameter,
this element is simply discarded, as if it were not
there.

This is useful especially in filters, e.g. when you
want to add elements that are not natively sup­
ported by Pandoc.

5. Back to blocks

We are done with Inlines, so let’s go back to
Blocks and let’s start with two easy ones:

RawBlock Format Text
CodeBlock Attr Text

They are the equivalent of RawInline and Code
for Blocks.

HorizontalRule

It’s the equivalent of a <hr> in HTML and it has
no parameters; so all horizontal rules are created
equal in Pandoc.

5.1 Blocks of blocks

BlockQuote [Block]

is the equivalent of <blockquote> in HTML and
it’s a long citation made of blocks. It lacks any
further parameter, so – like Paras – you can’t di­
rectly differentiate a BlockQuote from another.

The most general­purpose Block is Div:

Div Attr [Block]

It’s a generic container of blocks, but it has an
Attr data structure. It’s for Blocks what Span is
for Inlines.

In case you need a custom textual element that
contains blocks and is not currently natively sup­
ported by Pandoc, take a Div and specialize it with
classes and attributes.

Figure entered the Pandoc types’ family recently:

Figure Attr Caption [Block]

it’s intended for figures, illustrations, etc. and
it has an extra parameter, compared to Div:
Caption, whose name tells its intent.

Caption is mainly a list of Blocks, but it may
have an optional shorter version, which is a list of
Inlines, i.e. a one­liner. Here’s the definition:

Caption (Maybe ShortCaption) [Block]
ShortCaption [Inline]

That weird (Maybe ShortCaption) means that
the short version is optional. A Caption has a list
of Blocks for sure; it may have a shorter, one line

pandoc types > massimiliano farinella

23

version too; but it may also not.

5.2 Tables

The most complex Block in Pandoc is, by far, the
Table:

Table Attr Caption [ColSpec] TableHead
[TableBody] TableFoot

So Pandoc tables have an Attr, a caption, and a
list of specs of the alignment and width of every
column.

Their rows are divided in many sections: a head,
many bodies and a foot.

Caption is the same as in Figure:

Caption (Maybe ShortCaption) [Block]
ShortCaption [Inline]

A default alignment for every column is specified
by ColSpec:

ColSpec (Alignment, ColWidth)

Alignment can be only one among

• AlignLeft
• AlignRight
• AlignCenter
• AlignDefault

ColSpecs can specify column width too:
ColWidth can be a number in double precision
more than 0 and less or equal to 1; column widths
are relative to the table’s width: 0.5 means
“half the table width”, 1.0 means “full width”.
ColWidth is ColWidthDefault when the column
width is not explicitly set.

Table head and foot have an Attr and are made
of rows:

TableHead Attr [Row]
TableFoot Attr [Row]

You are not compelled to have a head, a foot or
multiple bodies – in your tables, I mean.

The simplest table you can fancy has no head
nor a foot, and a single body: its TableHead and
TableFoot components will be there anyway, but
they will have an empty list of Rows, while its list
of bodies will have only one TableBody.

Table bodies have more parameters than head
and foot:

TableBody Attr RowHeadColumns [Row]
[Row]

Every TableBody can have its local headers, span­
ning the first n columns and the first m rows.

The n quantity of header columns is specified with
the RowHeadColumns parameter (I think it stands
for “header columns for each row”).

The m quantity is not specified as a number;
instead, TableBody has two lists of Rows: the
first ones are headers, the second one carry
the actual data, except for their first n cells
(RowHeadColumns).

So m is actually the number of rows in the first list.

Row Attr [Cell]

Rows have an Attr and are made of cells.

Cell Attr Alignment RowSpan ColSpan
[Block]

Every cell has an Attr, like every head, foot, body,
and row. It may also have an alignment of its own,
different from the one specified at table level.

ColSpan and RowSpan are the number of columns

contextgroup > context meeting 2023

24

and the number of rows – respectively – that a
Cell spans over. Their default value is 1.

Cells are made of Blocks: they can’t directly con­
tain Inlines, as you would expect from HTML.

5.3 Pretty weird to be Plain

Table cells are the right element to explain the
weirdest Block:

Plain [Inline]

Plain is a list of Inlines, just like a Para, but it’s
not a paragraph.

Here the analogy with HTML comes in handy, be­
cause HTML table cells can contain both inlines
and blocks. Here’s some examples, all legal in
HTML:

<td id="cell-1">text</td>
<td id="cell-2">emphasized
content in a cell</td>
<td id="cell-3">

<p>A first paragraph.</p>
<p>A second paragraph.</p>

</td>
<td id="cell-4"></td>

In Pandoc, a table cell can only contain a list of
Blocks; in the examples above, only cell-3 con­
tains a list of blocks – two paragraphs – while cell-
1 and cell-4 contain a single inline – a Str and an
Image --; cell-2 in Pandoc would be a list of seven
Inlines:

[
Emph [Str "emphasized", Space, Str

"content"],
Space,
Str "in",
Space,
Str "a",

Space,
Str "cell"

]

That’s where Plain comes in, as a Block­wrapper
of Inlines. In the example above, the contents
of cell-1 would be:

[Plain [Str "text"]]

that is a list of one Block: a Plain; and so the ta­
ble cell is happy to carry a list of Blocks – actually,
a minimal list of one element; but it’s a Block, so
it’s fine.

Plain plays the same role in list items, where the
HTML analogy stays true as in table cells.

5.4 Lists

Now here’s the list of Pandoc lists:

BulletList [[Block]]
OrderedList ListAttributes [[Block]]
DefinitionList [([Inline], [[Block]])]

If there were ListItem, TermHeader and
TermData, they could be written – in a more
meaningful way – like this:

BulletList [ListItem]
OrderedList ListAttributes
[ListItem]
ListItem [Block]
DefinitionList [(TermHeader,
TermData)]
TermHeader [Inline]
TermData [Block]

But please keep in mind that ListItem,
TermHeader and TermData are not real Pandoc
types; I invented them for sake of clarity.

So a BulletList is the analogous of a (un­

pandoc types > massimiliano farinella

25

ordered list) in HTML, and it’s a list of items that
are actually lists of Blocks.

An OrderedList is the analogous of a (or­
dered list) in HTML, and it’s like a numbered
BulletList with three properties carried by the
ListAttributes parameter:

type ListAttributes = (Int,
ListNumberStyle, ListNumberDelim)

The first property – an Int in Haskell – is the start­
ing number (usually 1).

ListNumberStyle can be one of

• DefaultStyle
• Example
• Decimal
• LowerRoman
• UpperRoman
• LowerAlpha
• UpperAlpha

ListNumberDelim can be

• DefaultDelim
• Period
• OneParen
• TwoParens

A DefinitionList has its analogy in <dl>, <dt>
and <dd>: they are used to describe “description
lists” in HTML.

It’s a list of pairs whose first part is a list of
Inlines, like a paragraph, and the second one is
a list of Blocks.

They would be good to model glossaries or dictio­
naries; unfortunately, in Pandoc they lack extra
parameters to attach some extra data (e.g. a sort
key, a database id, etc.).

5.5 LineBlock

LineBlock is the last type in this excursion:

LineBlock [[Inline]]

it’s a list of one­liners, not paragraphs, just lines
of text.

A HTML counterpart might be <pre>.

So we finished all the Block and Inline elements.

6. Metadata

The document’s metadata is optional, and it’s
completely discarded unless you are producing a
standalone document (with the -s option of the
pandoc command).

Metadata is stored in Meta, do you remember the
definition of a Pandoc document?

Pandoc Meta [Block]

This is the constructor of Meta in Haskell:

unMeta :: Map Text MetaValue

quite obscure, if you’re not familiar with Haskell;
think of the metadata of a document as a list of
properties, each one with a name (Text) and a
value (MetaValue), which can be one of the fol­
lowing:

MetaMap (Map Text MetaValue)
MetaList [MetaValue]
MetaBool Bool
MetaString Text
MetaInlines [Inline]
MetaBlocks [Block]

contextgroup > context meeting 2023

26

Let’s start from the third one (MetaBool), the eas­
iest one, a boolean value: True or False. The
next one is a string value (MetaString). Then a
line of rich text (MetaInlines) as a list of Inlines;
then a list of blocks (MetaBlocks), like a list of
paragraphs, or an entire document (without meta­
data).

Climbing the complexity ladder, then comes
MetaList, a list of any of the previous ones, but
also – why not, in an escalation of complexity? – a
MetaList, but also a MetaMap, the last MetaValue:
a key­value pair, where the key is a string and the
value – not unexpectedly – a MetaValue.

Metadata is usually encoded in YAML syntax; if
you’re familiar with it, you can type in as much
metadata as you want.

7. That’s it

I’ve covered all the Pandoc types of version 1.23.
They can be reviewed in a short article like this, yet
they can embody a lot of documents, at least their
structure and contents, and get them translated
into many output formats.

8. Not quite…

What follows are personal opinions on Pandoc
types, that are inevitably influenced by the way I
use this software; so don’t take them as a general
advice, especially when I talk about possible ex­
tensions.

That said, some words about the limitedness of
the Pandoc types definition. I found it a feature,
not – sorry – a limit.

Pandoc has ways to introduce flexibility and add
more information, as well as additional, not na­
tively­supported textual elements, through filters,
RawInline and RawBlock elements, and by con­
ventions (more on this below).

Additional information often goes in Attr struc­
tures, which are not part of the text body and so
are simply ignored by output formats that don’t
know what to do with them, while enriching the
documents written in formats that can use them.

8.1 Pandoc to tidy up documents

You can use Pandoc to remove some unwanted
clutter from your texts that come from word
processors. You can even convert them to the
same format, say docx or odt.

It’s a side­effect of the limited number of textual
types of Pandoc.

It’s especially useful when the texts come from
different sources and authors, and you must first
make them consistent with a desired schema and
then put them together.

8.2 Conventions to do more

Custom styles are a convention that Pandoc uses
to support extra styles for output formats like
docx, odt and icml.

Refer to the Pandoc user manual for further infor­
mation; here I’m focusing on the way you can get
additional textual elements leaving Pandoc types
definition untouched.

When a portion of text needs an inline style – com­
monly known as “character style” in word proces­
sors – you enclose it in a Span element with a
custom-style attribute whose value is a conven­
tional name, e.g. “Red” for a text to be printed in
red ink.

If you need custom paragraphs, you enclose them
in a Div with the same custom-style attribute.
You must use a Div, because it provides an Attr
structure that Paras lack. The up-side of using
an enclosing Div is that you need only one Div
for a sequence of paragraphs of the same, non

pandoc types > massimiliano farinella

27

standard kind.

This is a convention that other formats, not provid­
ing custom styles, simply ignore: those Span and
Div elements are transparent to them, they are
simply replaced by their contents.

8.3 More on expanding Pandoc types

At first I found the lack of Para customizability
too limiting, I would have liked an Attr for them
to specialize paragraphs.

The Pandoc types definition has been updated and
expanded over time. While evaluating a new type,
I suspect that its expressibility in Markdown is
an important factor. And that works as a limiting
factor to the expansion of the types family.

Another limiting factor is that new elements, and
their interactions with current ones, must be trans­
lated into Pandoc’s source code; not to mention
that a new specification is always likely to be dis­
ruptive for existing workflows.

Some elements, like Para, look really barebone,
while other ones have seen their specs flourish, as
in the table model. Citations are pretty articulated
too. It’s not something planned from the start, but
more the result of the developers’ contributions
and users’ demands.

Anyway I would like the Pandoc types definition
to stay lean. I’m against adding arbitrary attrib­
utes to every Pandoc type – e.g. adding an Attr
to every element – as someone proposed in the
Pandoc mailing list.

Here’s where I see room for expansion:

• an Attr for Note elements, to support dif­
ferent kind of notes and even multiple refer­
ences to the same note

• indices: when or whether they will be sup­
ported, they’ll need specific elements

• expandability for the values of
ListNumberStyle, ListNumberDelim
and maybe Alignment, along with
the specification of a fallback;
e.g. LowerGreek->LowerAlpha,
UpperGreek->UpperAlpha for lower and up­
per Greek letters, that would become the al­
ready existing LowerAlpha and UpperAlpha
when the Greek ones are not available in an
output format

To support the inclusion of other documents, a Div
following some conventions is probably enough,
no new type needed. See pandoc-include2 or
pandoc-include-doc3, a project of mine.

Any different workflow may suggest new features
and so new types to add to the Pandoc types de­
finition. But Pandoc already provides means for
new features without waiting for the inclusion of
your desired types in the official definition, some­
thing that may never happen.

2 pypi.org/project/pandoc­include
3 github.com/massifrg/pandoc­include­doc

