
contextgroup > context meeting 2023

12

An Editor for Pandoc Types
Massimiliano Farinella

An editor for Pandoc abstract syntax tree (AST) lets you visually modify
any document readable by Pandoc and export it into any output format
it writes. Configurations make the editor customizable to different
workflows.

1. Project MEO in maintenance mode
The software for the MEO1 project is going to maintenance mode, because all of its
50 volumes have been published.

The software I’m introducing here – a visual editor for Pandoc’s internal document
model – is part of an effort to generalize and reuse some of the tools and the expertise
accumulated for MEO.

Here’s a recap of the features of the software for the MEO project:

• a software to edit and typeset rich texts, running on a single server, organized in
a bunch of services living inside Docker containers;

• the texts are XHTML encoded and edited with a browser connecting to the
server;

• the documents are stored in a MySQL database;

• typesetting is done mostly with ConTEXt (43 volumes), but also with InDesign
(7).

2. Longterm conservation of documents
Since the texts amounted to about 30,000 printed pages, their manageability – once
digitized – was the main aspect that guided the choice of the documents’ format.

The texts were very varied, so something like Markdown was not enough.

XML is a good choice for longterm conservation of texts that have a fair amount of
complexity. But saying ‘XML’ is not saying anything, because you must choose a XML
grammar: some existing ones, like XMLTEI, are overkill; many are missing certain
elements you’d really need; most of them lack good, free tools or require skills that
you can’t find easily. A hometailored grammar would fit your needs, but only you
would know it and carry all the burden of the tools and documentation.

1 articles.contextgarden.net/journal/2017/98-102.pdf

editor for pandoc types > massimiliano farinella

13

We chose XHTML: it’s HTML, and HTML is everywhere, with some good, free, visual
and customizable tools available. But it’s also XML, so you can use XMLrelated tools,
e.g. typesetting it directly with ConTEXt. It has elements for structured texts, though
not pageoriented. It lets you specialize elements like <p> or adding a class;
that way they can work as surrogates for custom elements of a tailored XML grammar.

3. Converting documents: Pandoc
Since formats and tools change over time, the conservation of documents involves
their ability to adapt to new tools: it means that you can convert them into a new
format without losing much of the information they carry.

Pandoc has become a de facto standard in the conversion of texts between different
formats. It’s a collection of readers, one for every input format it knows about, that
convert input formats into Pandoc’s AST (abstract syntax tree, its document model),
and writers, which do the opposite, i.e. transform the AST into the output format.

Both transformations often cause some loss of information. Pandoc’s goal is to pre
serve as much as possible of the document’s structure and contents, not necessarily
its graphical layout.

We used it for volumes to be typeset with InDesign, because the texts needed to be
converted from HTML to DOCX before getting imported in InDesign.

Interestingly for ConTEXt people, Pandoc now incorporates a Lua engine that lets you
customize its conversions writing Lua code.

4. Editing documents in the browser: Prosemirror
Prosemirror is the best kit around to build a visual editor of rich text in a browser.

In the MEO project, we used a HTML editor (CKEditor), but we did not need all the
HTML tags. So we spent some time getting around the quirks and the unwanted
HTML that the editor introduced now and then.

We had to edit the HTML source directly to solve the trickiest problems. Fortunately,
the editor provided an alternative view to directly edit the HTML source with the help
of syntax highlighting, though it is error prone and not for everyone.

Prosemirror uses HTML only to render your document in the browser and generates
descriptions of the changes to be done to the document accordingly to the user’s
keystrokes and mouse actions.

When such changes are applied, the modified document will be rendered again – say
“transformed into HTML” – in the browser. So the data structure of your document
can be of any kind, not necessarily HTML, and you have full control of the textual
elements that can or can’t enter your document.

contextgroup > context meeting 2023

14

5. Back to MEO and its legacy
I was asked if the MEO software could be used for the production of other books
(someone did it against my admonitions, though with some success).

The first answer to that question was “no”, because the software is tailored to solve
a very particular problem: dozens of books with similar features, the same layout,
organized in nearly isolated volumes identifiable by their number, from 1 to 50. This
software broadly economizes on regular patterns to reduce the complexity of a more
general model.

Then I started experimenting with the coding of new editors for different kinds of
documents. They were all based on Prosemirror, and for each one I set about pro
viding functions to transform their document model into Pandoc AST, so that I could
transform them to any of the formats Pandoc supports.

Eventually, I asked myself: why not writing – and maintaining – only one editor for
Pandoc AST instead of many similar custom editors? And, as a consequence, how to
provide customizations of the editor interface for any different document model?

6. An editor for Pandoc types
So here it is: a visual editor for Pandoc AST that can be adapted to different workflows
through configuration files.

It can import or output every format supported by Pandoc. If that is not enough,
you can write custom format readers and writers2, filters3, templates4, and reference
docs5 to better fit your model, add them to its configuration and have them directly
available from the program interface.

It’s not exactly an editor for everyone, because you need to know a little of the
internal document model of Pandoc, but it’s not that hard. It may be a bit harder
understanding how the Pandoc AST is mapped onto your document model, unless
you are the one who writes the custom readers, writers, etc.

Maybe you won’t get an editor perfectly fit for your model, but it pretends to be like
that as much as possible, through the customizations available in the configuration
files – essentially a main JSON file surrounded by CSS (for GUI customization) and
Lua files, since Pandoc facilitates the writing of custom readers, writers, and filters
in Lua.

Adding funtionalities to custom workflows will mostly consist of external Lua scripts,
while the main editor should stay the same.

2 pandoc.org/MANUAL.html#custom-readers-and-writers
3 pandoc.org/filters.html
4 pandoc.org/MANUAL.html#templates
5 pandoc.org/MANUAL.html#option--reference-doc

editor for pandoc types > massimiliano farinella

15

Fig. 1. HTML and Prosemirror document models

7. Pandoc vs. Prosemirror
Pandoc and Prosemirror have a different document model. At block level, they are
similar:

• both have a root node whose children are blocks (Blocks in Pandoc, block Nodes
in Prosemirror);

• both have blocks containing blocks, like a blockquote, that usually contains only
paragraphs;

• at paragraph level, they differ: while Pandoc’s Inlines can contain other In
lines in a treelike fashion of arbitrary depth, just like HTML does – e.g. you
may have a Strong emphasis inside an Emph emphasis, all inside a Quoted quo
tation, and so on –, the text nodes of a Prosemirror paragraph can’t contain
other nodes: the world is flat inside Prosemirror paragraphs;

• Prosemirror has Marks instead: they are like labels attached to portions of a
paragraph, e.g. you may have a text that has both a strong (bold) and a simple
(italic) emphasis, and so having two Marks.

Figure 1 is a snippet of the Prosemirror library guide, that shows the structure of the
same HTML code in the HTML document object model (conceptually equivalent of
Pandoc’s one) and in a Prosemirror structure (Marks are the orange ones).

In Prosemirror, you don’t have a predefined document model; instead you define a
schema specifying, for each node, which nodes it may contain, and which Marks you
can apply to it.

contextgroup > context meeting 2023

16

The schema for Pandoc documents follows the hierarchy of Pandoc types:

• there’s a root Node, Pandoc;

• such Node can contain an optional Meta object and a sequence of block Nodes;

• the block Nodes, that contain Inlines in Pandoc, will contain text Nodes, la
belled with Marks matching Pandoc Inlines.

This is approximately the Prosemirror schema for a document of Pandoc.

This is only the big picture, because it is actually more complex, in particular the
translation between Pandoc Inlines and Prosemirror Marks.

So, essentially, the editor:

• transforms Pandoc Blocks and Inlines (and Meta) from their JSON representa
tion into Prosemirror Nodes and Marks,

• lets the user manipulate the document, changing Nodes and Marks,

• saves the modified document transforming Prosemirror Nodes and Marks back
into Pandoc Blocks and Inlines (and Meta).

8. Conventions and extra features
The editor has interfaces for Pandoc conventions on custom styles6, but it also adds
some other conventions to support the inclusion of external documents, indices
– registers in ConTEXt – and more than one kind of notes, since Pandoc has only
footnotes.

Conventions don’t require changes in Pandoc types specification7. They are a way to
support new features simply using the flexibility of some of its Blocks or Inlines, in
particular those carrying the Attr data structure8).

Here are some examples:

• a custom character (inline) style is a Span with a customstyle attribute in its
Attr; this convention is natively supported by Pandoc;

• a Div with a customstyle attribute in its Attr sets the style of the paragraph it
includes; this is also natively supported;

• when a Div with a notetype attribute in its Attr is the only child of a Note, it
sets the note’s type (e.g. endnote, margin note); this is supported by the editor,
but not by Pandoc, so you need custom writers or filters to use it;

• a Div with an includesrc attribute in its Attr specifies the inclusion of an
external document; a custom filter will replace the Div contents with the Blocks
of the included document.

6 pandoc.org/MANUAL.html#custom-styles
7 hackage.haskell.org/package/pandoc-types-1.23/docs/Text-Pandoc-Definition.html
8 hackage.haskell.org/package/pandoc-types-1.23/docs/Text-Pandoc-Definition.html#t:Attr

editor for pandoc types > massimiliano farinella

17

9. Technical specs for developers
The editor is based on the Vite+Electron+Vue9 template by Alex Kozack, though it’s
not kept in sync with it.

It’s written in Typescript10 and it uses Tiptap11, Prosemirror12, Vue13, Electron14 and
Quasar15 for its GUI.

The code base structure lets you integrate the editor in an online app, like the MEO
one, but also package it as a standalone, Electronbased app.

For now you can deploy the standalone version only, for GNU/Linux (deb format) and
MS Windows (a single, portable executable).

10. Dependencies
The editor depends on many packages.

All have liberal licences, at least they are free as in “free beer”; some are more easily
replaceable than others because they are less widespread in the code base.

But upgrading them can bring in incompatibilities, since versions change at a fast
pace in the JavaScript/TypeScript world.

I have no fixes for that. Behind their automatic, selfsupporting appearance, software
projects are more like living organisms, with real people struggling to keep these
automatisms working.

Even worse, I have one more package to maintain: prosemirrortablessec
tions16.

Prosemirror’s module for tables (prosemirrortables) could not support Pandoc’s
most recent and richer table model; it was also without an official maintainer.

So I had to upgrade it to support table sections, lacking the skills of its original author,
Marijn Haverbeke, who’s also the author and maintainer of Prosemirror.

It seems to work fine for now, at least in my editor, but that’s undoubtedly another
dependency asking its toll.

9 github.com/cawa-93/vite-electron-builder
10 www.typescriptlang.org/
11 tiptap.dev/
12 prosemirror.net/
13 vuejs.org/
14 www.electronjs.org/
15 quasar.dev/
16 www.npmjs.com/package/@massifrg/prosemirror-tables-sections

