
calculating covers > henning hraban ramm

97

Calculating Covers
Henning Hraban Ramm

This article was first published
in German in DANTE’s DTK
1/2023. English version edited
by Peter Hopcroft and Karl
Berry.

Every TEX user can typeset a book, but the cover might be a different
story. We will learn a bit about dimensions and calculations as we
calculate a cover.

Take Cover!

I used to create the covers for my ConTEXt books in a graphics application. I still think
that’s the best way to plan a cover, because I can try new ideas or make changes,
and see the results straight away.

But there are disadvantages. It can take a lot of steps to make a small change. You
need to hand calculate the spine width, and remember to change it if the number
of pages changes. If you change the title or author on the front cover, you need to
remember to change it on the spine too. It can getmessy if you want several graphics,
each slightly different.

I want to show you how I use ConTEXt to calculate covers, without those disadvan­
tages.

Basic Setup

Let’s start simple: we define a paper size and a whole­page layer, on which we will
place our elements:

\definepapersize[Cover][width=350mm,height=240mm]
\setuppapersize[Cover]

\definelayer[cover][
x=0mm,y=0mm,
width=\paperwidth,
height=\paperheight,

]
\setupbackgrounds[page][background=cover,state=start]

\starttext
\setlayer[cover][

x=200mm,
y=20mm,

]{\ss\bfd My Title}
\strut
\stoptext

contextgroup > context meeting 2022

98

The \strut at the end is necessary, otherwise the page has no content and ConTEXt
won’t even display the content of the layer.

Dimensions

Where did we get those dimensions? I used the size of the DANTE books. Their page
is 165 by 240 mm, i. e. their cover width is two times 165 mm plus a 20 mm spine.
Maybe our printshop told us these dimensions, but we would need to ask again if
something changes. Let’s see if TEX can do the calculations.

\definepapersize[Cover][
width={2 * 165mm + 20mm},
height=240mm,]

That would have been nice, but ConTEXt complained about an “Illegal unit of mea­
sure”. It’s not as easy as it might be.

For ConTEXt to calculate with dimensions, we must use ‘dimension expressions’. As
a rule, they must start with a dimension:

\definepapersize[Cover][
width=\dimexpr 165mm * 2 + 20mm\relax,
height=240mm,]

Do we need to use such cumbersome code for every element on the cover? No! We
can predefine the most important values, most simply as macros:

\def\PageWidth{165mm}
\def\SpineWidth{20mm}

\definepapersize[Cover][
width=\dimexpr \PageWidth * 2 + \SpineWidth\relax,
height=240mm,]

That works, but it’s cleaner and more reliable if we define our own dimensions. In
𝜀-TEX it looked like this:

\newdimen\PageWidth
\PageWidth=165mm

But because we use ConTEXt, it should look like ConTEXt:

\definemeasure[PageWidth][165mm]

You can retrieve such a value in two ways: with \measure as a string for assignments
in \setup commands, or with \measured as a dimension for calculations.

In the second argument of \definemeasure, we can execute calculations without
writing an explicit \dimexpr, but internally, since \definemeasure uses \dimexpr,
it has the same limitations:

\definemeasure[CoverWidth][2\measured{PageWidth} + 20mm]

calculating covers > henning hraban ramm

99

Oh, this expression doesn’t start with a dimension!? Well, simple factors like this are
possible, even with decimal numbers. For example, these are valid: ‘2\lineheight’,
‘1.5\lineheight’, and ‘\lineheight * 2’, but ‘\lineheight * 1.5’ is not. In
such cases you can cheat with fractions: *1.5 throws an error, while *3/2 works.

Now the complete code is:

\definemeasure[PageWidth][165mm]
\definemeasure[PageHeight][240mm]
\definemeasure[SpineWidth][20mm]
\definemeasure[CoverWidth][2\measured{PageWidth} + \measured{

SpineWidth}]

\definepapersize[Cover][
width=\measure{CoverWidth},
height=\measure{PageHeight}]

\setuppapersize[Cover]

\definelayer[Cover][
x=0mm,y=0mm,
width=\paperwidth,
height=\paperheight,]

\setupbackgrounds[page][background=cover,state=start]

\starttext
\setlayer[Cover][

x=\dimexpr\measured{PageWidth} + \measured{SpineWidth} + 15mm
\relax,

y=20mm,
]{\ss\bfd My Title}
\strut
\stoptext

Page count

If the number of pages changes, we only need to change one number. But it is better
to calculate it automatically:

\useexternalfigure[content][book.pdf]
\getfiguredimensions[content]
\expanded{\definemeasure[SpineWidth][2mm + (0.09mm * 3/2 *

\noffigurepages/2)]}

\useexternalfigure gives our content PDF the symbolic name of content. \get­
figuredimensions detects the properties of the current image, including the num­
ber of pages that end up in \noffigurepages. We have to use \expanded to execute
\definemeasure immediately. Otherwise the current image would have changed,
and \noffigurepages would be wrong.

contextgroup > context meeting 2022

100

Paper thickness

How did we get that formula? We need the number of sheets. And my vocational
teachers used to remind us: “Paper has two sides!” Our book will be printed on 90
gsm1 paper. Standard 90 gsm paper is 0.09 mm thick. Our paper has some light filler
material, and is thicker: 1.5 times 0.9 mm thick. The 1.5 (written above as 3/2) is
called bulk. Of course, we could define paper thickness as a ConTEXt dimension, but
we don’t need it elsewhere.

The 2 mm above is a fold allowance, about 1 mm for each fold between a cover and
the spine. Strictly speaking, the fold allowance calculation should take into account
the thickness of the cover cardboard.

Now our cover automatically adapts to the number of pages in the book. Not too bad.

Layers

We want to place the title on the front cover, as well as the subtitle and author. We
want these on the spine as well. On the back cover, we want some blurb and an ISBN
barcode. Must we repeat the same laborious calculations time and again? No!

We will define separate layers for front cover, back cover, and spine. Then we can
give the offsets of elements relative to their parent layer:

% ...
\definelayer[BC][% back cover

hoffset=0mm,
y=0mm,
width=\measure{PageWidth},
height=\measure{PageHeight},

]
\definemeasure[FrontStart][\measured{PageWidth} + \measured{

SpineWidth}]
\definelayer[FC][% front cover

hoffset=\measure{FrontStart},
y=0mm,
width=\measure{PageWidth},
height=\measure{PageHeight},

]
\definelayer[Spine][

hoffset=\measure{PageWidth},
y=0mm,
width=\measure{SpineWidth},
height=\measure{PageHeight},

]
\setupbackgrounds[page][background={Cover,BC,FC,Spine},state=start

]

1 grams per square meter, also known as ‘grammage’

calculating covers > henning hraban ramm

101

% ...
\setlayer[FC][

x=15mm,
y=20mm,

]{\ss\bfd My Title}
\setlayerframed[Spine][

y=12mm,
offset=overlay,
frame=off,
align=flushleft,
width=\measure{SpineWidth},
height=0.66\measured{PageHeight},

]{%
\rotate[

rotation=90,
height=\measure{SpineWidth},
width=0.66\measured{PageHeight},
align={lohi,flushright},

]{Author: Title}%
}

For the spine text I used \setlayerframed so we have all the options of \framed to
hand. While planning a cover, I like to turn on the frames to check the positions of
the elements. We can make this setting a command­line argument:

\setupframed[offset=overlay] % no border distance
\startnotmode[debug]

\setupframed[frame=off]
\stopnotmode

To turn the frame on, call ConTEXt with --mode=debug. The above code also sets
offset=overlay for every frame, so we don’t have to do this for every frame indi­
vidually.

Buffers

Next, let’s take care of the blurb. We can place it with \setlayerframed[BC]. But
I find it confusing to have long text strings loitering within ConTEXt calculations.
Therefore, we define the text as a buffer in advance:

\startbuffer[Blurb]
\quotation{I never read a better book!}\wordright{(M. Reich-

Radecki)}
\blank[2*line]
Something about the brilliant content...
\stopbuffer

\startsetups[blurb]

contextgroup > context meeting 2022

102

% font/alignment/indent settings
\stopsetups

% ...
\setlayerframed[BC][

x=.15\measured{PageWidth},
y=20mm,
width=.7\measured{PageWidth},
height=.8\measured{PageHeight},
setups=blurb,

]{\getbuffer[Blurb]}

Variables

Let’s define some book data as variables, all in one place:

\setvariables[book][
contentPdf={vol01},% name of the content file
author={Donald E. Knuth},
title={The \TeX\ Book},
subtitle={about command-based typesetting},
series={Computer & Typography},
volume={1},
isbn={978-3-12345-007-Z},
coverimage={lion},

]
% ...
\useexternalfigure[content][\getvariable{book}{contentPdf}]
\getfiguredimensions[content]
% ...
\setlayer[FC][

x=15mm,y=20mm,
setups=maintitle

]{\getvariable{book}{title}}

When we change any of the above book data, it automatically changes on all the
layers where it appears. Wonderful. I have seen books with a different title or author
on the front cover and on the spine.

As you may observe, we can use expressions like \getvariable{book}{title} to
retrieve values. Of course, we also could have used macros.

Environment

Since we need the data for the book’s content (e. g. fly title, imprint) as well, we
should save it to an external environment file that we can load in both the cover and
the content documents:

\startenvironment settings

calculating covers > henning hraban ramm

103

\project bookbook

\setvariables[book][
%...
]
\stopenvironment

Bleed

Next step: we’ll add a background image. Since it should cover the whole page, we
must set it up to ‘bleed’. That means that the image extends a few millimetres past
where the bookwill be trimmed. Otherwise there can bewhite gaps at the edges if the
printed book isn’t cut exactly to the trim line. (That’s usually because paper changes
size as humidity changes during printing, rather than the fault of the printshop or
bookbinder.)

\definemeasure[Bleed][3mm]
\definemeasure[MaxHeight][\measured{PageHeight} + 2\measured{Bleed

}]
\setlayerframed[FC][

%x=-\measured{Bleed},
y=-\measured{Bleed},

]{\externalfigure[\getvariable{book}{coverimage}][height=\measure{
MaxHeight}]}

Of course, we can also put a background image for the complete cover (back, spine,
and front) on the “cover” layer. If the number of pages changes, the width of the
image will change slightly. Usually this doesn’t matter.

ConTEXt documents often use MetaPost graphics as background images. For those,
you can use the variables OverlayWidth and OverlayHeight.

While the image now has bleed, we can’t see it when we look at the PDF on-screen,
because we see the trimmed paper size. We can use the oversized option to expand
the paper size by 7.5 mm on all sides:

\setuppapersize[Cover][Cover,oversized]

But because we also need the dimension for our calculations, we will expand the
paper size explicitly:

\definemeasure[Trim][7.5mm]
\definemeasure[CoverWidth][2\measured{PageWidth} + \measured{

SpineWidth}]
\definemeasure[CoverWidthPlus][2\measured{PageWidth} + 2\measured{

Trim} + \measured{SpineWidth}]
\definemeasure[CoverHeightPlus][\measured{PageHeight} + 2\measured

{Trim}]

\definepapersize[Cover][

contextgroup > context meeting 2022

104

width=\measure{CoverWidth},
height=\measure{PageHeight}]

\definepapersize[CoverPlus][
width=\measure{CoverWidthPlus},
height=\measure{CoverHeightPlus}]

\setuppapersize[Cover][CoverPlus]

We don’t need to change the layers – their elements don’t get trimmed at their
borders.

Now we also want to see crop marks, and while we’re at it, we should properly set
up the invisible ‘boxes’ in the PDF that outline the trimmed area (TrimBox) and bleed
area (BleedBox). Unfortunately, you can only see them in Acrobat2, otherwise you
can check the values with pdfinfo -box.

\setuplayout[
marking=on,% crop marks
location=middle,% center page on the sheet
cropoffset=0mm,
bleedoffset=\measure{Bleed},
trimoffset=-\measure{Trim},

]
\setupinteractionscreen[width=max,height=max]

• A positive value of cropoffset shrinks the visible area and also affects the
other values both.

• A negative value of trimoffset defines the offset from TrimBox to CropBox.
• A positive value of bleedoffset defines the bleed as the offset from BleedBox

to TrimBox.
• Only \setupinteractionscreen activates the settings.

Setting TrimBox and BleedBox in this way does not affect the positions of the layers
or their contents.

More hints about dimension calculations

Dimension expressions (\dimexpr) can be nested. It sometimes makes sense to call
\dimexpr...\relax within a \dimexpr.

Internally, TEX calculates with integer ‘scaled points’ (sp) of 1/65536 pt. The maxi­
mum value for dimensions is 16384 pt (about 5.75 m).

If we output dimension values using \measure, they get typeset in pt (TEX point). We
can convert units like this:

\define[2]\Conv{\scratchdimen #1 \the\nodimen #2 \scratchdimen}
% first parameter: dimension, second parameter: unit
\Conv{1pt}{mm}

2 Preferences > Page Display > Show art, trim & bleed boxes

calculating covers > henning hraban ramm

105

Final remarks:

The code that I use in my publishing house also handles optional flaps.

This article is about softcovers. For hardcovers you need a bigger cover and more
bleed (about 15 mm), because the cover paper gets glued around the cover card­
board. The spine also needs more folding allowance (about 4–5 mm) for the hinges.
You can change the calculations above.

