
handling fonts in ConTEXt > willi egger

7

Handling fonts in ConTEXt
Willi Egger

Obviously when typesetting electronically, we need to have at least
one font available for use as base font. Although there are quite a
number of fonts deliveredwith the distribution, oftenwe need to use a
custom font. It is not that complicated to use a third­party font, how­
ever one needs to implement it in a structured way in order to make it
available to TEX. The following article gives insight into the basic prin­
ciples of how this can be done in ConTEXt.

Where to place a new font in ConTEXt
In order to make a new font available to ConTEXt, wemust make sure that it can find
it. The recommended way of doing so is to place the font into the TEX-tree: .../tex
/texmf-fonts/data. Basicallywe can just dump it there. Ifwehavemany third­party
fonts, it might make sense to put the fonts in subdirectories with the foundry name
and the font name in a directory thereunder.

ConTEXt operates a file database where all files in the TEX-tree are noted. So after
putting a new font into the TEX-tree, this database must be updated:

In a terminal run the following:

mtxrun --generate

Further ConTEXt maintains an index for the fonts so we have to update this index by
running:

mtxrun --script font --reload

Beyond using third­party fonts, we also can make use of the fonts provided by the
operating system.

In order to tell ConTEXt where to find the system fonts, we make use of the environ­
ment variable OSFONTDIR.

In Windows, we issue the following command on the command line:

set OSFONTDIR=c:/windows/fonts

Or set the environment variable in the ‘System Properties / Advanced’ tab.



contextgroup > context meeting 2021

8

On UNIX­like systems like MacOS and Linux, we have to issue the following com­
mand in the terminal:

– Mac:

export OSFONTDIR=/Library/fonts:/System/Library/Fonts:~/Library/Fonts

– Linux:

export OSFONTDIR=~/.fonts:/usr/share/fonts

For these UNIX­based systems, we need to add these command line statements to
the.bashrc, or the corresponding file for the shell we use, tomake thempermanent.

Again after this, wemust regenerate the file database and update the font indexwith
the aforementioned commands.

Finding a font name
ConTEXt comes with a series of tools to identify the available fonts.

For finding font names, we issue the following command in a terminal:

mtxrun --script fonts --list --all --pattern="*fontname*"

The pattern for the fontname can include wildcards (*).

Example: Lato

Lato is a free font which can be downloaded from www.latofonts.com/lato­free­
fonts/or fonts.google.com/specimen/Lato#standard­styles. The latest version is
2.015.

The Lato font family was designed by Łukasz Dziedzić, Warsaw, from 2010 to 2015.

Running in the terminal:

mtxrun --script font --list --file --pattern="*lato*"

results in the following list:

family n. weight style width variant fontname filename

lato black normal normal normal latoblack Lato­Black.ttf
lato black italic normal normal latoblackitalic Lato­BlackItalic.ttf
lato bold normal normal normal latobold Lato­Bold.ttf
lato bold italic normal normal latobolditalic Lato­BoldItalic.ttf
lato light normal normal normal latohairline Lato­Hairline.ttf
lato light italic normal normal latohairlineitalic Lato­HairlineItalic.ttf
lato extrabold normal normal normal latoheavy Lato­Heavy.ttf
lato extrabold italic normal normal latoheavyitalic Lato­HeavyItalic.ttf
lato normal italic normal normal latoitalic Lato­Italic.ttf
lato light normal normal normal latolight Lato­Light.ttf
lato light italic normal normal latolightitalic Lato­LightItalic.ttf



handling fonts in ConTEXt > willi egger

9

lato medium normal normal normal latomedium Lato­Medium.ttf
lato medium italic normal normal latomediumitalic Lato­MediumItalic.ttf
lato normal normal normal normal latoregular Lato­Regular.ttf
lato semibold normal normal normal latosemibold Lato­Semibold.ttf
lato semibold italic normal normal latosemibolditalic Lato­SemiboldItalic.ttf
lato light normal thin normal latothin Lato­Thin.ttf
lato light italic thin normal latothinitalic Lato­ThinItalic.ttf

This list confirms that ConTEXt has found the font family, and now we can start to
use it.

Using a font with \definedfont

Any font known to ConTEXt can be used with the command \definedfont.

\definedfont[latomedium*default at 12pt]

“Have Fun with Fonts in ConTEXt”
Adding *default makes ConTEXt use the default feature set which includes liga­
tures, kerning, etc.

This approach can be used to setup headings and alike; or in a situation where a
piece of text must be typeset in a dedicated font.

Typescripts
Of course, it would be very tedious to type the command \definedfont[font­
name*default at size] over and over again. For setting up the fonts to be used
throughout a document, we need to setup the fonts for the ‘body font environment’.
For this purpose there are typescripts.

Typescripts define a font for use throughout a document and enables the usual font
switches \tfa, \bf, \bi, etc.

Fonts in the distribution

The ConTEXt distribution comes with some 20 fonts, all of them can be used out-of-
the­box. All necessary setups (typescripts) are provided in the distribution and the
fonts can simply be loaded using \setupbodyfont[fontname, style, size].

You can find these fonts in the …/tex/texmf/fonts/opentype/public and …/tex
/texmf/fonts/truetype/public directories.



contextgroup > context meeting 2021

10

The fonts delivered with the ConTEXt distribution are:

Computer Modern:

name synonym remarks
modern : modern­base
modernvariable : modern­variable variable width typewriter font

The TeX Gyre collection of fonts, cross­platform OpenType format:

name synonym remarks
pagella : palatino incl. math
termes : times incl. math
heros : helvetica
bonum : bookman incl. math
scholas : schoolbook incl. math
adventor : avantgarde
cursor : courier
chorus : chancery

The DejaVu font family: dejavu and dejavu­condensed.

The IBMPlex family: IBMPlex sans, sans­condensed, serif, mono and sans­Hebrew,
Devanagari and Thai.

Six additional fonts (covering serif, sans serif, and monospaced):

name synonym style
Gentium : gentium serif
Antykwa Połtawskiego : antykwa­poltawskiego serif
Antykwa Toruńska : antykwa­torunska serif
Kurier : kurier sans
Iwona : iwona sans
Libertinus : libertinus serif

Four additional math fonts:

Euler : eulernova
STIX2 : stix
XITS : xits
DejaVu : dejavu

Creating a typescript for a third­party font

Typescripts provide a method to map font names onto the basic names inside Con­
TEXt.

Because these symbolic names are used by the \definebodyfont command, we
have to use the predefined names for each style and alternative.



handling fonts in ConTEXt > willi egger

11

serif sans mono handwriting calligraphy
tf Serif Sans Mono Handwriting Calligraphy
bf SerifBold SansBold MonoBold
it SerifItalic SansItalic MonoItalic
sl SerifSlanted SansSlanted MonoSlanted
bi SerifBoldItalic SansBoldItalic MonoBoldItalic
bs SerifBoldSlanted SansBoldSlanted MonoBoldSlanted
sc SerifCaps SansCaps MonoCaps

A typescript is a start­stop construct with two arguments:

\starttypescript[sans][name]
...
\stoptypescript

The first argument is the style, and the second is the name of the typescript.

The predefined styles are:

– serif
– sans
– mono
– math
– calligraphy
– handwriting

Font Fallback System

It is possible that a font does not provide all glyphs we would like to use. For this
reason ConTEXt has a built-in font fallback system. This makes it possible that a
missing glyph is retrieved from a defined fallback font.

For each of the default styles, there is a fallback setup:

– font:fallback:serif
– font:fallback:sans
– font:fallback:mono

The definitions of these fallback setups can be found in the type-fbk.mkxl file. For
example here are the setups for the sans style:

\startsetups [font:fallback:sans]
\definefontsynonym [Sans] [DefaultFont]
\definefontsynonym [SansBold] [Sans]
\definefontsynonym [SansItalic] [Sans]
\definefontsynonym [SansSlanted][SansItalic]
\definefontsynonym [SansBoldItalic] [Sans]
\definefontsynonym [SansBoldSlanted][SansBoldItalic]
\definefontsynonym [SansCaps] [Sans] [features=smallcaps]

\stopsetups



contextgroup > context meeting 2021

12

Setting up a Typescript

In order to end up with a useable font within ConTEXt, we need three steps involving
three typescripts:

– First typescript: map a symbolic, human­readable name onto the filename by
using \definefontsynonym

– Second typescript: map the internal basic name onto the human­readable
name by using \definefontsynonym

– Third typescript: create a typeface by using \definetypeface

Example: Lato

First we map the human­readable name onto the font file names:

\starttypescript[sans][lato]
\definefontsynonym[latoregular] [file:Lato-Regular]
\definefontsynonym[latobold] [file:Lato-Bold]
\definefontsynonym[latoitalic] [file:Lato-Italic]
\definefontsynonym[latobolditalic][file:Lato-BoldItalic]

\stoptypescript

In a second typescript the internal basic names are linked to these human­readable
names:

\starttypescript[sans][lato]
\setups[font:fallback:sans]
\definefontsynonym[Sans] [latoregular] [features=default]
\definefontsynonym[SansBold] [latobold] [features=default]
\definefontsynonym[SansItalic][latoitalic] [features=default]
\definefontsynonym[SansBoldItalic][latobolditalic]

[features=default]
\stoptypescript

In this step, we see a third argument to the \definefontsynonym command. Here
we can invoke features provided by the font.

In the third step the typeface is defined:

\starttypescript[MyLato]
\definetypeface[MyLato][ss][sans][lato][default]

\stoptypescript

These three typescripts should be placed in a file with the name starting with
type-imp- added to the font name e.g. type-imp-lato.mkxl.

In an actual document we load this typescript file, tell ConTEXt the name of the type­
script to use and set up the body font:

\usetypescriptfile[lato]
\usetypescript[MyLato]



handling fonts in ConTEXt > willi egger

13

\setupbodyfont[MyLato,ss,12pt]
{ \getbuffer[sampletext]}
{\it \getbuffer[sampletext]}
\bold{\getbuffer[sampletext]}
{\bi \getbuffer[sampletext]}

“Have Funwith Fonts in ConTEXt”

“Have Fun with Fonts in ConTEXt”

“Have Funwith Fonts in ConTEXt”

“Have Fun with Fonts in ConTEXt”
Font features

A lot of information about font features can be found in the font manual.

Modern fonts, such as OTF and TTF, can havemany features which can be turned on
and off. The list of possible features is long andConTEXt provides evenmore features
than fonts do. This is due to the fact that the features in ConTEXt are considered to
be more of a concept.

Examples of font features are:

liga general ligatures
tlig TEX ligatures
trep TEX ligatures replacements
kern Kerning information
smcp Small caps
onum Oldstyle numbers
tnum Table numbers
lnum Line numbers
pnum Proportional numbers
salt Stylistic alternates
swash Swash letters
sub Subscript
sup Superscript
ss01 Stylistic set 1
...



contextgroup > context meeting 2021

14

ConTEXt can show the features contained in a font:

mtxrun --script font --list --info --pattern=lato

The output of this run looks as follows:

mtx­fonts gpos features:
mtx­fonts
mtx­fonts feature script languages
mtx­fonts
mtx­fonts kern cyrl dflt
mtx­fonts dflt dflt
mtx­fonts grek dflt
mtx­fonts latn dflt
mtx­fonts mark cyrl dflt
mtx­fonts dflt dflt
mtx­fonts grek dflt
mtx­fonts latn dflt
mtx­fonts
mtx­fonts gsub features:
mtx­fonts
mtx­fonts feature script languages
mtx­fonts
mtx­fonts calt cyrl dflt srb
mtx­fonts dflt dflt
mtx­fonts grek dflt
mtx­fonts latn dflt rom trk
mtx­fonts case cyrl dflt srb
mtx­fonts dflt dflt
mtx­fonts grek dflt
...



handling fonts in ConTEXt > willi egger

15

This is the list of features provided by the Lato fonts in a compressed form:

gpos features:

kern
mark

gsub features:

calt
case
dlig
dnom
frac
liga
lnum

numr
onum
ordn
pnum
salt
sinf
ss01

ss02
ss03
ss04
subs
sups
tnum

For the configuration of a font we can define feature sets. These definitions may
best be included in the type-imp-'font-name' file.

It is advisable to make the new feature set inherit from the default feature set. A
font feature definition then looks like this:

\definefontfeature
[mylatofeature]
[default]
[onum=yes,
pnum=yes]

\definefontfeature
[f:onum]
[onum=yes]

This new feature set can be used in the typescripts either where the human­read­
able name is mapped onto the internal basic style name or in the definition of the
typeface. And of course it can be used in connection with the \definedfont com­
mand.

Further there are possibilities to turn on and off features on-the­fly.

There are different variants of these commands:

\addfeature{f:tnum}
\feature[+]{f:tnum}

Of course, there is also the possibility to subtract or switch off a given font feature
by:

\subtractfeature{f:tnum}
\feature[-]{f:tnum}

Using a comma separated list, we can turn on and off several features simultane­
ously.



contextgroup > context meeting 2021

16

It is also possible to use square brackets instead of curly braces for the (second)
argument. This mechanism can be handy for using even­spaced tabular numbers in
tables, when the body text uses proportional numbers.

The font manual describes more feature commands (see pages 43 and beyond).

The \definebodyfont command
All defined symbolic names use the information that is setupwith the\definebody­
font command.

\starttypescript [sans] [default] [size]
\definebodyfont
[4pt,5pt,6pt,7pt,8pt,9pt,10pt,11pt,12pt,14.4pt,17.3pt] [rm]
[tf=Sans sa 1,
bf=SansfBold sa 1,
it=SansfItalic sa 1,
sl=SansfSlanted sa 1,
bi=SansfBoldItalic sa 1,
bs=SansfBoldSlanted sa 1,
sc=SansfCaps sa 1]

\stoptypescript

Predefined typescripts also exist for serif and mono. If we need to add a font size
permanently, we can easily add such a typescript in the typescript file:

\starttypescript[sans][default][size]
\definebodyfont
[24pt]
[tf=Sans sa 1
bf= SansBold sa 1
...]

\stoptypescript

The \definebodyfontenvironment command
Another set of definitions is contained in the body font environments. These de­
finitions are related to a specific size of the body font. They define ‘script’ and
‘scriptscript’ sizes for math as well as the font switches to ‘x’ and ‘xx’ (\tfx, \tfxx
etc.).

\definebodyfontenvironment
[12pt]
[text=12pt,
script=9pt,
scriptscript=7pt,
x=10pt,



handling fonts in ConTEXt > willi egger

17

xx=8pt,
big=12pt,
small=10pt]

The first argument specifies the body font size to which the settings apply. In the
second brackets, the relative sizes are defined with units.

When looking at the log file, sometimes there are warnings that a body font size is
defined with the hint that this should be done globally. For this, it’s not necessary to
write the whole \definebodyfontenvironment. It is enough to just write:

\definebodyfontenvironment[24pt]

The \usebodyfont command
In documents where wewant to use several different fonts, it is good practice to tell
ConTEXt in the preamblewhich fontswewant to use. Thismakes the systempreload
the fonts, making switching fonts faster.

Font classes
There is yet another mechanism that makes it possible to use more than one body
font in the same document. This can be done by creating classes that assign name­
spaces. If we were to say \setupbodyfont[pagella, 10pt], for example, the
name­space would be pagella. This would ensure that at the moment of the font
switch, the whole set of styles and sizes would be available.

Defining a typeface
Now that all elements for the complete typescript file have been setup, we can de­
fine the typeface.

A basic typescript can consist of a single \definetypeface command for the third­
party font.

\starttypescript[Mylato]
\definetypeface[Mylato][sans][ss][lato][default]

\stoptypescript

This typescript tells ConTEXt that the name of the typescript is ‘Mylato’, and that
is the name that must be used in the \setupbodyfont command. This typeface
specifies a sans serif font, which is defined by the typescripts with the name ‘lato’.

However, typically typefaces are setup as a groupof serif, sans serif, mono, andmath
fonts.



contextgroup > context meeting 2021

18

The complete typescript file
% Typescriptfile type-imp-mylato.mkxl

\loadtypescriptfile[dejavu]
\loadtypescriptfile[xits]

\definefontfeature[mylatofeature][default]
[onum=yes]

\definefontfeature[f:tnum][default]
[tnum=yes]

\definefontfeature[f:onum]
[onum=yes]

\definefontfeature[f:no-pnum][default]
[pnum=no]

\starttypescript[sans][lato]
\definefontsynonym[latoregular] [file:Lato-Regular]
\definefontsynonym[latobold] [file:Lato-Bold]
\definefontsynonym[latoitalic] [file:Lato-Italic]
\definefontsynonym[latobolditalic][file:Lato-BoldItalic]

\stoptypescript

\starttypescript[sans][lato]
\setups[font:fallback:sans]
\definefontsynonym[Sans] [latoregular]

[features=mylatofeature]
\definefontsynonym[SansBold] [latobold]

[features=mylatofeature]
\definefontsynonym[SansItalic][latoitalic]

[features=mylatofeature]
\definefontsynonym[SansBoldItalic][latobolditalic]

[features=mylatofeature]
\stoptypescript

\starttypescript[Mylato]
\definetypeface [Mylato] [ss] [sans] [lato] [default]
\definetypeface [Mylato] [rm] [serif] [dejavu] [default]
\definetypeface [Mylato] [tt] [mono] [dejavu] [default]
\definetypeface [Mylato] [mm] [math] [xits] [default] [rscale

=1.2]
\stoptypescript



handling fonts in ConTEXt > willi egger

19

In a document, the following lines are placed in the preamble:

\usetypescriptfile[type-imp-mylato.mkxl]
\usetypescript[Mylato]
\setupbodyfont[Mylato,ss,10pt]

The Lato font in use
The numbers in oldstyle: 1 2 3 4 5 6 7 8 9 0.

The sample fileWard
TheEarth, as ahabitat for animal life, is inoldageandhasa fatal illness. Several, in fact. Itwouldbehappening
whetherhumanshadeverevolvedornot. Butourpresence is like theeffectofanold-agepatientwhosmokes
many packs of cigarettes per day—andwe humans are the cigarettes.

Inhabitants in Three European Cities

Town Number of Inhabitants
Amsterdam 1.149 Million
London 8.982 Million
Warsaw 1.690 Million

Summary
Once ConTEXt can find a font, it can be used by issuing the command \defined­
font[fontname*default at size]. However, it is better to define the whole envi­
ronment for a font by means of typescripts. Within those typescripts, the font file­
names are mapped onto human­readable fontnames and then these are mapped
onto the basic internal names. The typeface is defined by means of another type­
script.

It is good practice to define this typescript as well the other styles in order to have
a complete set of serif, sans, mono and math. The font setup can be fine­tuned
by defining font features which can be invoked by the typescript as a permanent
solution. Alternatively, defined font features can also be added and subtracted on-
the­fly.

Sometimes one needs to take care of font sizes that are not predefined. By using the
command \definefont, the range of definitions can easily be extended. In case of
such an extension, we also have to take care of the body font environments i.e. to
define the font switches for x and xx, the script and scriptscript sizes for math and
the font switches for \small and \big.

References
– Font manual. Hans Hagen. In the distribution.
– Fonts with ConTEXt. Typescripts explained. Wolfgang Schuster. 2013.
– wiki.contextgarden.net/Fonts
– wiki.contextgarden.net/Typescripts_examples
– wiki.contextgarden.net/Style_Alternatives


