
translations from a vocabulary > hans van der meer

33

Translations from a vocabulary
Handling translation into various languages
Hans van der Meer

This module was formerly part of hvdm-xml but has now been split off
into an independent module with its own description. It is used for
making other modules languagesensitive and is especially tailored
for XML use.

1. Introduction
Elements of the output canbe internationalized through thedefinition anduseof one
or more vocabularies. This module allows for a flexible and adaptable translation
of individual words. The component effectuating this is the module hvdm-voc. Its
interface is intended to be accessed from XML as well as through ConTEXt macros.

This module certainly is not a full blown translator. Its scope is restricted to the
translation of individual words; not even plural forms are automatically translated
and therefore must be added separately. Although simplistic in nature, it provides
for the automatic adaptation of certain keywords to a change of language.

It all started with the construction of a database in XML format with historical facts
aboutmy ancestors. Each fact resided in a separate file to be processed bymy note
processing module hvdm-tak. Everything is enclosed in an XML node with suitable
node names chosen. Since the lingua franca in computing is English, it seemed nat
ural to use this for these names. Thus each person in my notes became to be de
scribed by a <person> node. For instance:

<note>
<person>

<name>Arnoldus van der Meer</name>
<age>28</age>
<profession>seller of mineral water</profession>

</person>
<!-- other nodes -->

</note>

Typeset in ConTEXt with \language[en], such a note looks as in figure 1. Note the
English keywords at the left edge corresponding to the node names. The remainder
of the text is in Dutch, as might be expected for material taken from five centuries
of Dutch archives.



contextgroup > context meeting 2021

34

Figure 1. Language set to English.

Not all members in my family liked the English words interspersed between the
Dutch text; thus arose the idea for this translator. The keywords with their transla
tion were put in a vocabulary as described below. In the notes module, their type
setting is enclosed in a \translatemacro call. The result is shown in figure 2; again
note the keywords at the left edge.

Figure 2. Language set to Dutch.



translations from a vocabulary > hans van der meer

35

But (inevitably) I became a bit sloppy. Dutch words crept in as node names for new
properties which were added in the course of the genealogical investigations:

<note>
<person>

<name>...</name>
</person>
<samenvatting>an abstract</samenvatting>

</note>

Figure 1 shows what happens if the note is typeset in English again. That one key
word samenvatting strangely deviates from the others.

Figure 3. Language set to English with Dutch node.

Although changing node names to their English equivalents is a simple action in an
editor, this problem provided me with the incentive to make the translator module
a bit more general. Instead of translating from one language only, it should allow
translation between any two languages in the vocabulary. Look at Figure 4 where
this flexibility is demonstrated by changing to \language[de].

2. XML interface
Everything startswith the creation and filling of a vocabulary. By default, themodule
provides a vocabulary to which one can add translations but it is possible to create
others, as has been done in the code below. A new vocabulary is created the first
time its name appears on a <vocabulary name="name"> node. Further such calls
with that name are silently ignored.



contextgroup > context meeting 2021

36

Figure 4. Language set to German.

Creation of a vocabulary will notmake it automatically the current vocabulary. That
should be done by the separate set attribute as in the example below.

<vocabulary name="myvocab" set="myvocab">
<word>

<en>dutch</en>
<nl>nederlands</nl>
<de>niederländisch</de>
<fr>néerlandais</fr>

</word>
</vocabulary>

Load the above data from a buffer or a file with:

<vocabulary buffer="aBuffer"/>
<vocabulary file="aFile"/>

Vocabularies are switched with the set attribute. A value ‘default’ for the name
performs a switch back to the default vocabulary installed by themodule.1 The code
below illustrates how to set and retrieve the names of the current vocabulary and
language.

<vocabulary set="myvocab"/>
<vocabulary show="vocabulary"/>
<vocabulary show="language"/>

1 Note that a vocabulary named ‘default’ cannot be used and will raise an error if one tries to do so.



translations from a vocabulary > hans van der meer

37

The results are vocabulary =myvocab and language = en. Note that attributes name
and set behave differently. When the named vocabulary does not yet exist, the for
mer will create a vocabulary with that name, whereas the latter will issue an error
message instead. When both attributes are present, the vocabulary is created first
and then made current.

Individual translations can be added to any named vocabulary, but when there is no
name attribute on <vocabulary> the current vocabulary will be extended.

<vocabulary>
<word>

<en>greek</en>
<nl>grieks</nl>
<de>griechisch</de>
<fr>grec</fr>

</word>
</vocabulary>

With the current language being en this results in greek, Greek andGREEK. Changing
the language setting to German with

<vocabulary use="de"/>

will change to griechisch, Griechisch and GRIECHISCH.

Translations are retrieved by a <vocabulary> node with attributes get, Get and
GET. The three variants select the corresponding case variants. Presence of a use
attribute translates into that language but leaves the current language setting un
changed. For instance:

<vocabulary get="greek"/>
<vocabulary use="nl" Get="dutch"/>
<vocabulary use="fr" GET="english"/>

produces griechisch, Nederlands and ANGLAIS. The presence of a ‘get’-ter forces
the change from attribute use to be locally confined. Although the last language
accessed here was from use="fr", the current language de has not changed.

The vocabulary is set up in such a way that translations between all language pairs
are possible. In itself that sounds nice, but what if a synonym has to be added? For
example, besides ‘Dutch’ translated into ‘niederländisch’, we want the twoletter
code ‘nl’ to be translated into ‘niederländisch’ too.

The problem here is the following: Addition of ‘nl’ in the same manner as demon
strated above, will overwrite cross translations already present instead of merely
adding the equivalents for ‘nl’. The solution is simple. Use <word add="nl">, and
the enclosed translations will be taken as synonyms. In this manner ‘nl’ is added to
the vocabulary without generating cross translations. We will find for instance ‘nl’



contextgroup > context meeting 2021

38

translating into niederländisch just as it happens when translating ‘Dutch’ to ger
man.

<word add="nl">
<en>dutch</en>
<nl>nederlands</nl>
<de>niederländisch</de>
<fr>néerlandais</fr>

</word>

A problem still remains with this translation scheme. Let us add translations for
Icelandic, switch to Dutch and see what get and Get translations do: ijslands and
Ijslands. The latter is wrong, because in Dutch the ‘ij’ counts for one letter! Thus
‘Ijslands’ should have been ‘IJslands’. Luckily the solution is not problematic. Add
an extra node for ‘ijsland’→ ‘IJsland’ as a synonym with an adapted language code
Nl; the first letter of nl now being in uppercase. Instead of raising the first letter of
the translation only, the translator then uses the alternative definition:

<Nl>IJslands</Nl>

With this addition to the vocabulary we now get IJslands as it should be. The same
problem arises for letters such as the ç in français leading to ‘FRANçAIS’ instead of
‘FRANÇAIS’ or the ä in ‘Niederländisch’. Here we could have solved it with other
exceptions as <FR>FRANÇAIS</FR>, but instead the upperlowercase translator has
beenmade a little bit smarter. It knows how to do a case change for letters like é, à,
ü, ç.

3. ConTEXt interface
Although primarily developed for use in an XML environment, we end up calling TEX
code. It is therefore always possible to fall back on the underlying macros. The
following are the available API calls:

• \VocabularyCreate[#1] – creates a vocabulary named in #1 if it does not yet
exists, otherwise do nothing. Note that the current vocabulary is not changed;
this should be done explicitly with the set macro.

• \VocabularyDelete[#1] – use this in the rare case one wishes to get rid of a
vocabulary. The default and the current vocabulary cannot be deleted; nor is it
possible to remove items from a vocabulary once they have been added.

• \VocabularySet[#1] – the vocabulary named #1 will be made the current one.
Reset the module to its default vocabulary by calling it with an empty parame
ter.

• \Vocabulary – the name of the current vocabulary.
Example: the current vocabulary ismyvocab.



translations from a vocabulary > hans van der meer

39

• \VocabularySetLanguage[#1] – the twoletter language code makes it the
current vocabulary language.2 An empty argument will set it to the value of
\currentlanguage.

• \VocabularyLanguage – retrieves the twoletter language code of the current
language.
Example: after changing to French by calling \VocabularySetLanguage[fr]
the current language at this point is fr.

• \VocabularyLoadFromBuffer[#1]
\VocabularyLoadFromString[#1]
\VocabularyLoadFromFile[#1] – these macros load data as XML nodes from
string, buffer and file.

Example: prepare with \startbuffer[spanish] a buffer to add Spanish:

<vocabulary>
<word>

<en>spanish</en>
<nl>spaans</nl>
<de>spanisch</de>
<fr>espagnol</fr>

</word>
</vocabulary>

and load it with \VocabularyLoadFromBuffer[spanish]. Now translation
of ‘Spanish’ in fr will be espagnol. Similarly, use \VocabularyLoadFrom
File[italian.xml] from the prepared file italian.xml and obtain italien for
‘Italian’.

• \translate{#1}
\Translate{#1}
\TRANSLATE{#1} – translate the argument into the current language with no
case change, first letter uppercase, all letters uppercase, respectively.
Example: \TRANSLATE{Dutch} in the current language fr results in DUTCH.
But an absent translation returns its argument unchanged as in \Trans
late{Japanese} is Japanese.

• \VocabularySetLanguageDefault[#1]
\VocabularyLanguageDefault
\translateDefault[#1] – There are situations where one language is spe
cial. An example is found in the module mentioned in the introduction. Nodes
<author>, <person>, etc. need special treatment in the program. This is ac
complished by attaching a flag. Without a common default language, it would
have been necessary to flag all occurrences of <author>, <auteur>, <Autor>,
etc. separately. By using \translateDefault this can be avoided because it

2 Do not be tempted to try ‘Fr’ or ‘FR’ because the module will silently convert both to ‘fr’.



contextgroup > context meeting 2021

40

enables the programmer to collect all occurrences into a common language.
An empty argument \VocabularySetLanguageDefault[] sets to the value of
\currentlanguage. Note that setting of the default language is done globally.

4. Availability
The module and its supporting modules can be downloaded from my site hvander
meer.com/publications.html. The TEX-stuff resides in section “Articles on TeX”, and
downloads are a little below in the link called “ConTeXt module distribution”.

Object and photo: Harald König


