
multimedia > michal vlásak

89

Multimedia, PDF and ConTEXt
Michal Vlásak

The possibility of inserting multimedia (audio, video, 3D) into PDF files has been here
for a long time, albeit in different forms. Traditionally ConTEXt has had support for it,
but the support in PDF viewers was dubious. What is the situation today, and is it
worth all the hassle?

1. Introduction

With features like multimedia there has always
been a circular problem – the features are mostly
unknown, hence not demanded by users, thus
not implemented by PDF writers, nor PDF view­
ers. It doesn’t help that for multimedia, the stan­
dard defines as much as five different mecha­
nisms for including them. What do these mech­
anisms offer? What does ConTEXt support? What
can the viewers handle? And does it even make
sense today?

Recently, as part of my bachelor thesis, I looked
into these problems with the hope of presenting
my findings to you. I will introduce and compare
the various mechanisms the PDF standard offers,
as well as discuss their support in real world.

2. PDF mechanisms for multimedia

Over the years, various versions of the PDF stan­
dard have developed several ways of including
“multimedia” into PDF files. The simplest is XOb­
jects which allow raster and vector graphics –
this is a well­known and well­supported feature
in both PDF writers and viewers.

However, later revisions of the PDF standard
added several different mechanisms for includ­
ing video, audio or 3D files (each mechanism sup­
ports a different subset of these three). They all

have in common the capability of showing and
playing multimedia as part of the PDF page. How­
ever, in choosing the right one, we might want to
delve into the details. For the purpose of evalu­
ating these mechanisms from the perspective of
ConTEXt, it is possible to devise the following cri­
teria:

a. support in the PDF standard (too new, depre­
cated, etc.),

b. supported media types (audio, video, 3D),

c. support for different source types (embed­
ded file, external file, URL file)

d. what is possible to achieve (“usefulness”)
and at what cost (“complexity”),

e. current support in ConTEXt,

f. and the most important: support in PDF
viewers.

The “source types” need a bit of explanation. Es­
sentially all file references in PDF files can be one
of three types:

1. Embedded file. The referenced file is literally
embedded into the PDF file, which means
that it can also be compressed as part of it
(although you don’t gain much by compress­
ing multimedia). This is nice because the re­

89 89

89 89



contextgroup > context meeting 2020

90

sult is integral – the media file can’t get lost
and there is only a single file to distribute.

2. File URL. The reference to the file is solely
the URL. While this takes almost no space
at all in the PDF file, it means that the avail­
ability of the media file cannot be guaranteed
since it is not tied to the PDF file.

3. External file. The PDF includes only a file
path, not the full file. Compared to file URLs,
the file doesn’t have to be available over the
internet, but has to be distributed along with
the PDF file (and the relative path has to
match).

While the possibility of embedding the media
file alone may be more interesting than just side
stepping the PDF viewer altogether and using an­
other application to play the file, with tighter in­
tegration the demands are increasing. Hence,
the “usefulness” aspect includes the possibility
of interaction or scripting e. g. using media player
buttons (“controls”), scripting with JavaScript or
control with PDF actions (ConTEXt’s \goto, and
triggers like “page open”, which may allow auto­
play).

Several PDF viewers were tested: Acrobat Reader
(AR), Foxit Reader (FR), SumatraPDF (SU) on Win­
dows and Evince (EV), Okular (OK), Xpdf (XP),
MuPDF (MU), Firefox (FF), Google Chrome (CR)
on Linux. But only four (Acrobat, Foxit, Evince
and Okular) were found to support multimedia (at
least partially).

2.1 Movies

Movies first appeared in PDF 1.2 (1996), but had
since been deprecated (PDF 1.5, 2003) and be­
came unsupported (PDF 2.0, 2017). The mech­
anism supports video and audio from any source
(either embedded, external or file URL).

The mechanism is relatively simple and allows

some customization and control (media player
controls, PDF actions).

This is the backing mechanism for including most
video and audio in ConTEXt:

\externalfigure[video.mp4]
[width=\textwidth,
height=.461\textwidth]

\useexternalsoundtrack
[myaudio][audio.mp3]

\checksoundtrack{myaudio}

Here, only the “external file” method is allowed
in ConTEXt.

Only Evince and Okular support this mechanism
today (with their usual quirks, see further). No­
tably Acrobat Reader no longer supports movies.

2.2 Multimedia (“Renditions”)

This mechanism first appeared in PDF 1.5 (2003).
It is not officially deprecated, but Acrobat consid­
ers it “legacy”.

The mechanism in theory supports any multime­
dia type (even Flash and images), but in practice
only video and audio make sense today.

This mechanism was supposed to replace sound
and movie objects, hence its deprecation. The
mechanism is very complex (the spec is ten times
longer than the one for movie objects). It ex­
pects the PDF viewers to work with plugins and
introduces ways for determining if a media file is
really playable in some plugin. It is allowed to
even include more media files (to serve as fall­
back should the primary one be unsupported by
the viewer). Another complexity is that the con­
cept of the rectangle where the media will be
played (“screen”) is separated from the media it­
self (“rendition”). In theory this allows mixing
and matching, but in practice is a lot of unneces­

90 90

90 90



multimedia > michal vlásak

91

sary complexity.

This mechanism is the most extensible though.
It allows multimedia player controls, as well as
PDF actions. The PDF action can be either one
of the predefined ones or entirely programmed in
JavaScript using the related API.

ConTEXt makes the mechanism available to its
fullest extent, meaning that a bit of the complex­
ity leaks to the interface:

\useexternalrendering[embedded]
[video/mp4][video.mp4][embed=yes]

\useexternalrendering[URL]
[video/mp4]
[https://example.com/video.mp4]

\useexternalrendering[external]
[video/mp4][video.mp4]

\definerenderingwindow[mywin]
[width=\textwidth,
height=\textwidth]

\placerenderingwindow[mywin][embedded]
\placerenderingwindow[mywin][URL]
\placerenderingwindow[mywin][external]

In the example above, all three file sources are
showcased. The complexity leak is apparent, be­
cause one has to manually specify the MIME type
(video/mp4). Also the page area and media file
are defined separately. Flash files (.swf) could
also be inserted this way, but that would be point­
less today.

Evince and Okular support this mechanism (with
the usual quirks), Acrobat and Foxit do as well,
but Acrobat sadly only allows embedded files.

2.3 3D art

This is the first mechanism that facilitates 3D

files. It first appeared in PDF 1.6 (2004) and al­
lows the inclusion of U3D and later PRC files. The
3D objects described in the files are shown in a
scene whose parameters (like camera position/
direction, background color, lighting, etc.) can be
configured.

The flaw in this mechanism is that the source is
not a file, but a “PDF stream”, which is essen­
tially an embedded file with different metadata.
It should also allow “external files” to contain the
stream data but this is not used much in practice
though.

This 3D functionality is really nice. It allows a
great amount of interactivity (playing with the
camera, selectively disabling 3D objects, etc.)
and also scripting, allowing switching between
predefined “views” with PDF actions, and many
other possibilities with JavaScript. One can even
program animations that allow user interactions
(e. g. buttons for changing the animation parame­
ters).

ConTEXt handles both PRC and U3D files with
\externalfigure. Although a very basic usage is
possible, one would usually set some of the many
parameters using the display and controls Lua
parameter sets.

Adobe Acrobat has full support for this mecha­
nism; the only flaw is that it doesn’t allow exter­
nal streams (but this isn’t what one would want in
most cases anyway). Foxit Reader also has sup­
port for 3D but it is more limited (e. g. no support
for JavaScript and printing previews).

2.4 Rich Media

Rich media first appeared in Adobe extension
level 3 to PDF 1.7 (2008), but was later included
in PDF 2.0 (2017). It was meant to replace both
the “renditions” (audio, video) and the 3D art
mechanisms, with an unified approach based on
Flash; that also means support for arbitrary Flash

91 91

91 91



contextgroup > context meeting 2020

92

applications. Only embedded files are supported.

One distinct feature of this mechanism is that it
allows the playing of multimedia in a customiz­
able window. It even supports a full screen win­
dow, not just part of the page like the other mech­
anisms do.

While the mechanism is heavily based on Flash
(which has been obsolete since December 2020),
it does allow the direct playing of media fileswith­
out Flash (this could be called “plain” rich media).

The initial idea was that the PDF viewer would
support Flash (and playing its video as well as
mp4), but the audio/video wouldn’t be played di­
rectly by the PDF viewer. Instead it would be
played by an intermediate Flash application (em­
bedded in the PDF along with the media file) that
would provide the graphical user interface (con­
trols) as well as the scripting capabilities. This
means that this mechanism has some inherent
complexity that is not justifiable nowadays.

Fortunately 3D files have always been used in the
“plain” way and haven’t suffered much from ad­
ditional complexity in rich media. In the end, the
only difference between 3D Rich Media and 3D
art is the internal wrapping structure (3D rich me­
dia uses normal files instead of streams, which is
more consistent and also allows more than one
script file to be used).

Unfortunately with the death of Flash, there re­
mains no scriptability for audio and video. There
is also no way to display multimedia player con­
trols (although there is a working hack for Acro­
bat).

The use of this mechanism in ConTEXt is based on
Flash. For example, to include a video, one would
embed a Flash video player like vplayer.swf
together with a media file, passed as an argument
to the player (but the process is simplified for the
user).

With Flash being dead, this approach is no longer
useful, but you can still find the details in java
-imp-vplayer.mkiv.

Surprisingly, Acrobat and Okular still support this
method! Both have a compatibility layer that de­
tects an embedded Flash media player file and
instead of using it to play the video, they play
the video natively. This is good because you can
find a lot of documents that use Flash­based rich
media. But there is absolutely no need to cre­
ate new documents with embedded Flash player
applications – it only takes additional space and
isn’t even used. The different compatibility layers
sometimes pickup other information (like show
controls or loop the multimedia), and still there
is no possibility of scripting.

Okular notably doesn’t support plain rich me­
dia. The support would be easy to add, but
my proposed patch1 depends on changes2 to the
poppler library, which I haven’t finished yet.

Support similar to Okular’s should be relatively
easy to add to Evince as well. The hard work of
supporting video in the first place is already done.

The 3D support is the same as with 3D art for Ac­
robat Reader. Weirdly, Foxit Reader doesn’t sup­
port 3D files wrapped in Rich Media, even though
there doesn’t seem to be any good reason not to.

3. PDF viewer quirks

While the previous descriptions might have
sounded positive, the situation is not very good.
There are many PDF viewer quirks that prevent
the pleasant consumption of multimedia in PDF.

3.1 Okular, Evince

The support for video and audio in Okular and
Evince is based on GStreamer. GStreamer is a
framework that allows a range of different me­

92 92

92 92



multimedia > michal vlásak

92

PDF feature Criteria AR FR EV OK
Movies Embedded file

✗ ✗

✓ ✓
External file ✓ ✓
URL file ✓ ✓
Action ✗ ✗
Controls ✓ ✓

Renditions Embedded file ✓ ✓ ✓ ✓
External file ✗ ✓ ✓ ✓
URL file ✗ ✓ ✓ ✓
Action ✓ ✓ ✗ ✗
Controls ✓ ✓ ✓ ✓
Sections ✓ ✗ ✗ ✗
Customization ✓ ✓ ✗ ✗

Rich Media Embedded file ✓

✗ ✗

✓
Plain ✓ ✗
Flash compatibility ✓ ✓
Autoplay ✓ ✓

3D art External stream ✗ ✗

✗ ✗

PDF 1.7 extensions ✓ ✓
Action ✓ ✗
JavaScript control ✓ ✗
Interactivity ✓ ✓
Preview printing ✓ ✗

3D Rich Media Same as 3D art ✓ ✗ ✗ ✗
Formats MP3 ✓

Opus ✗
AVI ✓
MP4 ✓
MPG ✓
MOV ✗
WMV ✓
U3D ✓ ✓

✗ ✗
PRC ✓ ✓

Table 1. Multimedia support in PDF viewers

93 93

93 93



contextgroup > context meeting 2020

94

dia processing. Okular and Evince use it to play
the media files. Since GStreamer’s media type
support is based on plugins, the right plugin for
the media type has to be installed. These plugins
are distributed in bundles and three of them cover
just about any reasonable format and more.

But while the media file format support is great,
both of these PDF viewers don’t really support
multimedia PDF actions or JavaScript for more
control over the media playback. One can then
ask what is the benefit of playing the multimedia
in the PDF viewer in first place.

3.2 Acrobat, Foxit

Acrobat and Foxit both use Windows Media
Player for playing videos. Both support controls,
but behave differently – Acrobat displays the con­
trols outside of the multimedia annotation, Foxit
within, making the actual result less predictable.

Both viewers (for security reasons) also nag you
to allow the media playback every time (even
multiple times in a single document). You can se­
lect to trust a file either this time, or from now on,
but if somebody opens a foreign PDF with video,
they are not going to get smooth experience.

Another thing is that there is a check box in
Acrobat Reader, which enables the “legacy”
Multimedia mechanism. Different versions, of
course, may have the checkbox either checked or
unchecked by default, further limiting the chance
of a pleasant user experience.

4. Conclusion

All in all, of the three mechanisms, one is dep­
recated and unfortunately no longer supported in
the most common PDF viewers, while the other
two mechanisms are needlessly complex and in
reality limited. For example, while the multime­
dia mechanism supports JavaScript, depending

on it essentially narrows the choice to Acrobat
Reader.

The old multimedia (“renditions”) mechanism is
the most widely supported across PDF view­
ers, but the “plain rich media” support could be
brought up to par.

In theory, despite the loss of Flash, rich me­
dia seems like a potential future investment, be­
cause it is embraced by recent PDF standards,
and apart from handling audio and video, it is also
the best way of inserting 3D files (albeit with no
controls/scripting).

5. ConTEXt future

What should ConTEXt do? On one hand all avail­
able mechanisms are flawed in one way or an­
other. On the other hand some users may still find
the functionality useful.

I see two opposing possibilities in the area of au­
dio/video:

1. Give up on the functionality completely. This
seems to be what the users did, because as
it turns out, for some time now, multimedia
content inserted by ConTEXt was not playable
for one reason or another anyway (although
some bugs have been fixed recently).

2. Keep the functionality, but clean up the code
to remove what is now obsolete. The figure
system could change the backing PDF mech­
anism to work with rich media.

Note that 3D support in ConTEXt is completely fine
and works in Acrobat and Foxit. There are even
open source tools one can use to create these 3D
files – Meshlab, which can convert other formats
to U3D, and Asymptote, which can generate PRC
files.

94 94

94 94



multimedia > michal vlásak

95

1 https://invent.kde.org/graphics/okular/-/merge_requests/426
2 https://gitlab.freedesktop.org/poppler/poppler/-/merge_requests/855
3 https://dspace.cvut.cz/handle/10467/95065
4 http://mirrors.ctan.org/macros/luatex/optex/pdfextra/pdfextra-doc.pdf
5 https://mailman.ntg.nl/pipermail/ntg-context/2021/103011.html

6. Summary

The support of multimedia in PDF viewers is sum­
marized in table 1 (p. 92). As a bonus, support
of a few other features I have tested is in table 2
(p. 96). “✓” means full support, “ ” partial sup­
port (supported, but not fully / with some quirks)
and “✗” means no support.

Most partial support designations are for the
different multimedia formats in Evince/Okular
(where they need the right plugin installed).
/GoToR actions differ wildly across viewers (e. g.
some don’t support URLs, some don’t support
page numbers, etc.). /Text annotations have
only partial support in most viewers because
they implement a reasonable behaviour, instead
of what the standard specifies (that is what the
other viewers do).

7. Closing words

This was a dump of knowledge that I gained from
writing my thesis.3 Sadly its in Czech, but a large
part of what I deem practical today is imple­
mented and documented in English4 (mostly plain
TEX macros). Other resources for this topic were
linked on the mailing list.5

Sadly, while working on this, I didn’t have access
to the PDF 2.0 standard. My information mostly
comes from the PDF 1.7 standard and publicly
known information about PDF 2.0 – the rich me­
dia mechanism has been included in PDF 2.0, but
I am not sure to what extent the Flash part got
implemented. I also don’t know if there really is
anything new, but nothing I have read suggests
it. Regardless, viewer support isn’t complete for
something standardized over 20 years ago, so a
sudden revolution in PDF viewers is not to be ex­
pected.

95 95

95 95



contextgroup > context meeting 2020

96

PDF feature Criteria AR FR EV OK SU XP MU FF CR
Bookmarks Are shown ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Non­GoTo actions ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓
Annotations Comments (/Text) ✓ ✓ ✗ ✗

Attachments (FileAttachment) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗
/EmbeddedFiles ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗
Actions /GoTo ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

/GoToR ✓ ✗ ✗ ✗
/URI ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

/OpenAction ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Table 2. Interactive features supported in PDF viewers

Photo: Hraban Ramm

96 96

96 96


