
contextgroup > context meeting 2020

82

UTF8 in MetaPost
Hans Hagen

Around the time Alan Braslau and I were discussing his new MetaFun node module,
I made the MetaPost library accept UTF8, if only because nowadays this is the pre
ferred portable file encoding. Before I show you what that brings us, let’s see how
the TEX suite deals with input.

When TEX and MetaFont, the program that MetaPost shares much of its code with,
evolved, punch cards were still widely used. There was quite some diversity in the
word sizes of computers and these were not always in multiples of eight. Initially
characters in the engines took seven bits but soon that became eight. When a char
acter was read from file, it went through a re-mapper that turned the input byte into
one that was normalized inside the engine. Before something was shown to the
user (on the console or in the log), there was a conversion to the preferred output
encoding. Internally ASCII was used, but the outside world could, for instance, talk
EBCDIC.

In the previous paragraph I talk in the past tense because in the extended TEX en
gines that I use, LuaTEX and LuaMetaTEX, this mapping no longer exists: they have
a UTF8 code path instead. In the MetaPost library that is used in LuaMetaTEX, the
mapping has also disappeared because in practice it was a one-to-one mapping, an
unused leftover from the past (one can consider it an old system dependency).

The TEX and MetaPost engines differ in the way that they deal with characters. In
TEX a character has a so-called catcode. For instance, a dollar sign is a math shift
character (it begins or ends math mode) and its code is 3. A space has code 10, a
comment 14, etc. There are 16 catcodes and if you want to know more about them:
read the TEX book! It’s one of these intriguing properties of TEX.

In MetaPost characters don’t have catcodes but they are grouped into classes that
drive the expression scanner, like left or right bracket. They also play a role in pri
oritizing operators. In TEX, characters with a code larger than 127 are valid, and
depending on how a macro package is set up, they have category ‘letter’ or ‘other’.
In stock MetaPost they are illegal. However, in MetaPost we can make them letters
(one of the classes) after which the engine will just accept them and not complain.
In the wide TEX engines, the characters larger than 127 signal a multibyte UTF8 se
quence, which also means that the related character code ends up as glyph refer
ence. If you want a specific UTF sequence to be a valid letter in a macro name, you
need to make sure it has the right catcode: you need to set this up (think of Chinese
with thousands of characters). In MetaPost it’s easier: just put all the characters of
the 128-255 range in the ‘letter’ class and you’re done. You can tell the library to do
that with a simple flag, and MetaPost can do UTF8. All it takes is this:

82 82

82 82



utf8 in metapost > hans hagen

83

for (int k = 127; k <= 255; k++) {

mp->char_class[k] = mp->utf8_mode

? letter_class

: invalid_class;

}

After this rather trivial patch (of course one needs to set the mode) we can do the
following to get figure 1:

\startMPcode
vardef dœn_knüth = textext("Don Knuth") enddef ;

vardef ДональдКнут = textext("Donald Knuth") enddef ;

draw ДональдКнут xsized 10cm withcolor "middlegray";
draw dœn_knüth xsized 4cm withcolor "darkred";
draw dœn_knüth ysized 5mm rotated 45 withcolor "darkgreen";
draw textext(str dœn_knüth) ysized 5mm rotated -45 withcolor "darkblue";
draw textext(str ДональдКнут) ysized 5mm rotated 90 withcolor "darkgray";
\stopMPcode

Donald KnuthDon Knuth
Don Knuthdœn_knüth

Д
он

ал
ьд

Кн
ут

Figure 1.

But, as Alan and I were playing with this, a more tantalizing example became possi
ble; the result is shown in figures 2 and 3:

\startMPcode
save p ; pen p ; p := currentpen ;

pickup pencircle scaled .05;

picture ○ ; ○ := image (draw fullcircle) ;

picture ◎ ; ◎ := image (draw fullcircle ; draw fullcircle scaled .5) ;

currentpen := p ;

draw ◎ ysized 2cm withcolor "darkblue" ;

draw ○ ysized 2cm shifted (4cm,0) withcolor "darkred" ;

\stopMPcode

83 83

83 83



contextgroup > context meeting 2020

84

Figure 2.

\startMPcode
draw image (

for i=1 upto 100:

draw ◎ scaled .3i shifted ((i/2)*mm,0) rotated (i*10)
withcolor (i*red/100);

endfor ;

) shifted (4cm,8cm);
\stopMPcode

Figure 3.

In the end we came up with a bunch of symbols that can be used as indicators in
graphics for tagging data points:

\startMPcalculation
begingroup

pen savedpen ; savedpen := currentpen ;

pickup pencircle scaled .05 ;

interim ahlength := .5 ;

interim ahvariant := 1 ;

picture ○ ; ○ = image(draw fullcircle) ;

picture ◎ ; ◎ = image (draw fullcircle ;draw fullcircle scaled .5) ;

picture □ ; □ = image(draw fullsquare) ;

84 84

84 84



utf8 in metapost > hans hagen

85

picture ◇ ; ◇ = □ rotated 45 ;

picture △ ; △ = image(draw (dir 90--dir 210--dir 330--cycle) scaled (2/3)) ;

picture ▽ ; ▽ = △ rotated 180 ;

picture ◁ ; ◁ = △ rotated 90 ;

picture ▷ ; ▷ = △ rotated -90 ;

picture ● ; ● = image(fill pathpart ○) ;

picture ■ ; ■ = image(fill pathpart □) ;

picture ◆ ; ◆ = image(fill pathpart ◇) ;

picture ▲ ; ▲ = image(fill pathpart △) ;

picture ▼ ; ▼ = image(fill pathpart ▽) ;

picture ◀ ; ◀ = image(fill pathpart ◁) ;

picture ▶ ; ▶ = image(fill pathpart ▷) ;

picture ↑ ; ↑ = image(drawarrow (0,-1/2)--(0,1/2)) ;

setbounds ↑ to unitsquare;

picture → ; → = ↑ rotated 180;

picture ↓ ; ↓ = ↑ rotated 90;

picture ← ; ← = ↑ rotated -90;
pickup savedpen ;

endgroup ;

\stopMPcalculation

These symbols can now be used as follows, see figure 4 for the result:

\startMPcode
save n ; n := 0 ;

for symbol = ○, ◎, □, ◇, △, ▽, ◁, ▷, ●, ■, ◆, ▲, ▼, ◀, ▶, ↑, →, ↓, ← :

draw symbol scaled 4mm shifted (n, 0) ;

n := n + 6mm ;

endfor ;

\stopMPcode

Figure 4.

Of course, when we have many such symbols, using a font with these characters
in combination with the textext command is more efficient because then we just
refer to a shape in a font.

The possibilities are endless. Take the following:

\startMPcalculation
def ○ = fullcircle enddef ;

def ✁ = cutafter enddef ;

def ✃ = cutbefore enddef ;

def ✏ = withpen pencircle enddef ;

def ✖ = scaled enddef ;

def ◷ = rotated - enddef ;

def ◴ = rotated enddef ;

\stopMPcalculation

85 85

85 85



contextgroup > context meeting 2020

86

This might draw icon and emoji freaks to MetaPost, but it might equally drive away
potential users (see figure 5):

\startMPcode
draw (○ ✁ point 2 of ○) ✖ 2cm ✏ ✖ 5mm ◷ 90 withcolor "darkred" ;

draw (○ ✃ point 2 of ○) ✖ 2cm ✏ ✖ 5mm ◴ 90 withcolor "darkblue" ;

\stopMPcode

Figure 5.

But, as with many obscure features in macro packages, I’m sure that users will find a
way to (ab)use this feature. Just for the record: the textext command is the Meta
Fun way to get typeset text, and using string for colors is just a convenient way to
access colors at the TEX end (a redefinition of a primitive). The MP wrapper com
mands deal with runtime MetaPost processing and embedding.

This article was first published in NTG’s MAPS No.51.

Last touches to the statistical charts module Photo: Harald König

86 86

86 86


