
scrutinized paths > mikael p. sundqvist

73

Scrutinized Paths
A new path transformation in MetaFun
Mikael P. Sundqvist

In this article, I discuss a problem that occurred while trying to find di
rectionpoints of joined paths in MetaPost. We found that when join
ing two paths where the final point of the first path is the same as,
or at least very close to, the first point of the second path, numer
ical problems might appear. Finally, we present different solutions
that appeared on the ConTEXt mailing list on how to avoid the numer
ical problem, the most generic ones of which work by sanitizing the
joined graph. In fact, this resulted in a new path transformation called
scrutinized.

Curves of constant width and Barbier’s theorem
A curve of constant width in the plane is a simple closed convex curve for which every
pair of parallel supporting lines are equally distant apart. This distance is called
the diameter of the figure. The simplest such curve is the circle. In figure 1 we
show some other examples. Once the dashed lines are given, the curves can be
constructed with a compass, with the needle point located at the blue dots. Note
that the curve in (a) has corners while the other two curves are smooth.

(a) (b) (c)
Figure 1.

It is well known that the circumference of a circle with diameter 𝑑 equals 𝜋𝑑. A
theorem by Barbier states that this is true for any curve of constant width.

Theorem (Barbier) Any curve of constant width 𝑑 has length 𝜋𝑑.

73 73

73 73

contextgroup > context meeting 2020

74

There are several different proofs of this property. I recently had the pleasure to
supervise a group of students in a project course in mathematical communication
at Lund University, where they were supposed to understand and write about these
proofs. One of the proofs of Barbier’s theorem is based on the so-called Minkowski
sums. Given two sets 𝐴 and 𝐵 of points in the plane, the Minkowski sum 𝐴 + 𝐵 is
defined to be the set:

𝐴+ 𝐵 = {𝑎 + 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .

It was while I was presenting to the students an idea about how to possibly draw
those figures that I myself encountered a problem with MetaPost, to which I wrote
to the ConTEXt mailing list about. It is the result of this inquiry that I will now discuss
below.

The problematic figure
It is a fact that if we start with a figure 𝐴 of constant width, and add a copy 𝐵 of it
that is rotated 180° around some point 𝑂, then the Minkowski sum 𝐴 + 𝐵 will be a
disk. Moreover, if the width of 𝐴 (and thus also of 𝐵) is 𝑑, then the diameter of the
disk will be 2𝑑.

In fact, more is true. If we walk around the boundaries of 𝐴 and 𝐵 (in an anticlock
wise direction, say), then the point on the circle for which the tangent has a given
direction is given by adding the position vectors of the two points on 𝐴 and 𝐵 where
their tangents have the same direction. Here we have considered the point 𝑂 as ori
gin. This property is illustrated in figure 2, and this is the image that we wanted to
draw.

The idea of drawing such a figure was to first construct the red curves, and then,
thanks to the property explained above, loop through the angles and find the corre
sponding points on the curves for which the direction is the correctdirectionpoint.

Given that the two curves of constant width were constructed as p[1] and p[2], we
tried to construct their sum p[3] as:

p[3] := for phi=0 step 30 until 360:
((directionpoint dir(phi) of p[1])
shifted
(directionpoint dir(phi) of p[2]))
..

endfor cycle;

However, instead of giving us the expected result of figure 2, we ended up with the
strange result in figure 3.

74 74

74 74

scrutinized paths > mikael p. sundqvist

75

𝑂

Figure 2.

𝑂

Figure 3.

75 75

75 75

contextgroup > context meeting 2020

76

Debugging
Looking at figure 3, we can see that the problem seems to be that the arrows are
not tangential to the curves. Could it be that directionpoint is responsible for the
wrong result? In the MetaPost manual we can read that directionpoint is sup
posed to give the first point on a path where a given direction is achieved.

I got a quick reply on the mailing list from Taco Hoekwater, indicating that the prob
lem is not really with the macro directionpoint per se, but rather with the con
struction of the curve of constant width, so let us focus on that for a while.

\startMPcode{doublefun}
u:=0.5cm;
path cl,cs,p[];
z0 = (0,6/sqrt(3)*u);
z1 = z0 rotated 120;
cs := (fullcircle scaled 16u) shifted z1;
cs := cs cutafter point 1/6 along cs;
cl := (fullcircle scaled 4u) shifted z0;
cl := cl cutbefore point 1/6 along cl

cutafter point 2/6 along cl;

p[0] = cs ..
cl ..
(cs rotated 120) ..
(cl rotated 120) ..
(cs rotated 240) ..
(cl rotated 240) ..
cycle;

draw p[0] withpen pencircle scaled 2bp withcolor darkred;
drawpoints p[0];
drawpointlabels p[0];
\stopMPcode

The resulting image (figure 4) does not look strange. We glued several arcs together
to form a path. We can see that the path p[0] has a pair of points that are very
close to each other near where the two arcs are joined. Mathematically, these two
points should be the same, but they are not. This is where the problem lies. As Taco
noticed, the paths cs and cl are given as below.

cs := (141.73224999999996,-49.097491614210789) ..
(75.312386775380347,111.25424516116959) ..
(28.347427842053655,147.2925755432174);

cl := (28.346108531095332,147.29283827977969) ..
(0,154.88788322842163) ..
(-28.346108531095332,147.29283827977969);

76 76

76 76

scrutinized paths > mikael p. sundqvist

77

0

1
23456

7

89
101112

13
141516
17

Figure 4.

Note that the last point of cs is almost the same as the first point of cl. In figure 5,
we have drawn the curve p[0] together with its control points (with the first point
slightly bigger). We have also tried to add tangent vectors pointing in directions 𝑛 ×
30° with the code:

for phi=0 step 30 until 330:
drawarrow(((-u,0)--(u,0)) rotated phi)

shifted (directionpoint dir(phi) of p[0]);
freelabel("$" & decimal phi & "$\unit{degree}",

directionpoint dir(phi) of p[0],
origin);

endfor;

0°

30°60°

90°

120°

150°180°210°240°270°300°330°

Figure 5.

As you can see, the tangent vectors are not placed correctly. It seems that they
tend to get stuck exactly at the points where the different paths are glued together.
The problem is simply that these points are too close to each other and this confuses
directionpoint, which apparently interprets the curve to have tangents that it does
not have, or at least should not have (remember that directionpoint returns the

77 77

77 77

contextgroup > context meeting 2020

78

first point of the path where it finds a point it interprets as having the correct direc
tion). Now that the problem is identified, we can start to look for solutions.

Solutions
Amusingly, when Taco had identified the problem, three solutions appeared more
or less immediately. I will present them here, and I will start with the simplest but
least general one that I came up with myself, and then move on to the more generic
solutions given by Taco Hoekwater and Hans Hagen.

A simple but naïve solution

The first solution that came to my mind was to shorten the paths cs and cl slightly.
This would move the problematic points a bit further away from each other, which
would help directionpoint to interpret the directions correctly. Thus, I changed
my definitions of cs and cl into the following:

cl := (fullcircle scaled 4u) shifted z0;
cl := cl cutbefore point (1/6+epsilon) along cl

cutafter point (2/6-epsilon) along cl;
cs := (fullcircle scaled 16u) shifted z1;
cs := cs cutafter point (1/6-epsilon) along cs;

Note that we use an epsilon here to cut the circles just a bit more. The constant
epsilon is defined to be 1/256/256 (sic!). Apparently this was enough in this case.
These are indeed the definitions used to produce figure 2.

In figure 6, we have implemented this change for the pathscsandcl, and we noticed
that the curve p[0] still had 18 points (lefthand image), but now the almost dupli
cate points are sufficiently far away from each other not to confuse directionpoint
(righthand image).

0

1
23456

7

89
101112

13
141516
17

0°
30°

60°
90°

120°

150°180°210°

240°

270°
300°

330°

Figure 6.

78 78

78 78

scrutinized paths > mikael p. sundqvist

79

A more general solution by Taco Hoekwater

Both Taco and Hans had the idea of cleaning the joined paths by removing the su
perfluous points that are almost exactly at the same place. Taco’s solution reads
like this:

\startMPdefinitions{doublefun}
def clean_path(suffix p) =
begingroup;
save q,precontrols,postcontrols,points,i,j;
pair precontrols[],postcontrols[],points[] ;
j := 0;
for i = 0 upto length p:
if arclength (point i of p--point i+1 of p) > 0.01:

points[j] := point i of p;
postcontrols[j] := postcontrol i of p;
precontrols[j+1] := precontrol i+1 of p;
j := j + 1;

fi
endfor;
if arclength (point 0 of p--point length p of p) < 0.01:

j := j - 1;
fi
p := for i=0 upto j-1: points[i] ..

controls postcontrols[i] and precontrols[i+1] ..
endfor cycle;

endgroup;
enddef;
\stopMPdefinitions

Now it is a matter of adding:

clean_path(p[0]);

after the definition of p[0]. We draw the resulting curve twice in figure 7. To the left
we show its point, and we notice that the number of points of the path has decreased
from 18 to 12. The six near duplicates were indeed merged. To the right we have also
drawn some tangent vectors and, as expected, the correct points are now found by
directionpoint.

The implemented solution by Hans Hagen

Only minutes after Taco’s solution appeared on the mailing list, Hans announced a
solution in the form of a path modifier implemented in Lua. After some tuning, it
looks like this:

\startluacode
registerscript("scrutinized", function()

local pth = scanpath()

79 79

79 79

contextgroup > context meeting 2020

80

0

1
234

5

6
78

9
1011

0°
30°

60°
90°

120°

150°180°210°

240°

270°
300°

330°

Figure 7.

local d = 1/10^scannumeric() -- decimals
local p1 = pth[1]
local x1 = p1[1]
local y1 = p1[2]
local res = { pth[1] }
local r = 1
for i=2,#pth do

local pi = pth[i]
x2 = pi[1]
y2 = pi[2]
if abs(x1-x2) > d or abs(y1-y2) > d then

r = r + 1 res[r] = pi
x1 = x2
y1 = y2

else
res[r][5] = pi[5]
res[r][6] = pi[6]

end
end
if pth.cycle then

res.cycle = true
if abs(x1-p1[1]) > d or abs(y1-p1[2]) > d then

-- keep
else

res[r] = nil
end

end
injectpath(res)

end)
\stopluacode

80 80

80 80

scrutinized paths > mikael p. sundqvist

81

It is defined in MetaFun like this:

\startMPdefinitions{doublefun}
newscriptindex mfid_scrutinized ;
mfid_scrutinized := scriptindex "scrutinized" ;

primarydef p scrutinized n =
runscript mfid_scrutinized p n

enddef;
\stopMPdefinitions

With these definitions, we need to redefine the path p[0] with for example:

p[0] := p[0] scrutinized 3;

where 3 is chosen to compare the points up to three decimal places. We see the
curves redrawn with this solution in figure 8. Again, the number of points in the path
has decreased from 18 to 12.

0

1
234

5

6
78

9
1011

0°
30°

60°
90°

120°

150°180°210°

240°

270°
300°

330°

Figure 8.

Acknowledgments
I would like to thank Taco Hoekwater for suggesting to write this article, and Hans
Hagen for giving me the support I needed during my writing. As usual, it was great
fun to play with MetaFun.

81 81

81 81

