
ecmascript > hans hagen

41

ECMAscript
Just because it can be done
Hans Hagen

Why oh why?
We use a mupdf based PDF viewer: SumatraPDF, and occasionally we use the tools
that come with mupdf. So when checking if that viewer supports JavaScript1 in wid
gets, I noticed the standalone interpreter, which made me wonder how easy it would
be to interface with it.

ECMAscript support for LuaMetaTEX uses the lightweight library subsystem; like ffi,
the library interface is setup dynamically. Support is not integrated in LuaMetaTEX,
so there are no overheads or dependencies.

We assume that the library is on the system, and when not, then there is also no sup
port. We stick to the absolute minimum of interfacing needed and delegate every
thing else to Lua. We assume a stable API, and if not, well … sorry.

The components
The optional delayed loading interface adds only a few kilobyte to LuaMetaTEX. The
Lua library interface is part of the ConTEXt distribution, which means that it’s officially
supported. There is a TEX module that loads the lot and provides the user interface.

And of course, somewhere on the system, there should be the mujs library.2

A module like this should conform to the ConTEXt LMTX standards (a minimalistic,
nonbloated API, interfacing in Lua and TEX, etc.).

In ConTEXt libraries go into the platform tree, like:

/tex/texmf-win64/bin/lib/luametatex/mujs/libmujs.dll
/tex/texmf-linux-64/bin/lib/luametatex/mujs/libmujs.so
/tex/texmf-osx-64/bin/lib/luametatex/mujs/libmujs.so

1 The official name is ECMAscript which is the standardized core language.
2 Taco compiled the library for his system during the talk and confirmed that it also works out of the box

on MacOS. Hint: make shared

41 41

41 41



contextgroup > context meeting 2020

42

An example
\usemodule[ecmascript]

\ecmacode {
console("");
console("When you see this, the loading has succeeded!");
console("");

}

\ecmacode {texprint("Just a {\\bf short} sentence.")}

\startecmacode
texprint("And this is \\inframed{\\bs a bit longer}

sentence.")
\stopecmacode

Just a short sentence.

And this is a bit longer sentence.

Catcodes
As with the Lua interface, catcode regimes are supported:

\ecmacode {texprint(catcodes.vrb,"Just a {\\bf short} sentence.")}

Just a {\bf short} sentence.

Possible values are:
tex regular TEX catcode regime
ctx standard ConTEXt catcode regime
vrb verbatim catcode regime
prt protected ConTEXt catcode regime

Print whatever you want
\startecmacode
console("We’re doing some MetaPost!");
texsprint(

"\\startMPcode "
+ ’fill fullsquare xyscaled (6cm,1cm) withcolor "darkgray";’
+ ’fill fullsquare xyscaled (4cm,1cm) withcolor "middlegray";’
+ ’fill fullsquare xyscaled (2cm,1cm) withcolor "lightgray";’
+ "\\stopMPcode "

);
\stopecmacode

42 42

42 42



ecmascript > hans hagen

43

Of course the code doesn’t look pretty, but it can serve as a step-up to the real deal:
coding in ConTEXt speak (or Lua).

Files
Because the interpreter is pretty bare, interfacing to the file system has to be pro
vided, but we can just use what we already have (controlled by Lua).

\startecmacode
var f = File("\jobname","r");
var l = f.read("*a");
f.close();
texprint(

"This file has "
+ l.length // or: l.length.toString()
+ " bytes!"

)
\stopecmacode

This file has 2545 bytes!

We support the usual arguments, like *a, *l, a number indicating the bytes to read
etc. There is no support for writing files (let’s use the security excuse).

A file with some script:

function filesize(name) {
var f = File(name,"r");
if (f != undefined) {

var l = f.seek("end");
f.close();
return l;

} else {
return 0;

}
}

Loading that file:

\ecmafile{context-2020-ecmascript.js}

Using that function:

\ecmacode{texsprint("This file has " + filesize("\jobname.tex") +
" bytes!")}

This file has 2548 bytes!

43 43

43 43



contextgroup > context meeting 2020

44

ECMAscript from Lua
\startluacode
optional.loaded.mujs.execute [[
var MyMax = 10; // an example of persistence

]]

optional.loaded.mujs.execute [[
texsprint("\\startpacked");
for (var i = 1; i <= MyMax; i++) {
texprint(
"Here is some rather dumb math test: "

+ Math.sqrt(i/MyMax)
+ "!\\par"
);

}
texsprint("\\stoppacked");

]]
\stopluacode

The result:

Here is some rather dumb math test: 0.31622776601683796!
Here is some rather dumb math test: 0.4472135954999579!
Here is some rather dumb math test: 0.5477225575051661!
Here is some rather dumb math test: 0.6324555320336759!
Here is some rather dumb math test: 0.7071067811865476!
Here is some rather dumb math test: 0.7745966692414834!
Here is some rather dumb math test: 0.8366600265340756!
Here is some rather dumb math test: 0.8944271909999159!
Here is some rather dumb math test: 0.9486832980505138!
Here is some rather dumb math test: 1!

So what good is it?
Not that much value is added compared to what we already have but at least we can
say that we can ECMAscript (a.k.a. JavaScript). It might convince (new) users to use
the Lua interfaces, so we pay a low price and no overhead anyway.

44 44

44 44


