
tokens > hans hagen

29

Lowlevel: Tokens
Hans Hagen

1. Introduction
Most users don’t need to know anything about tokens but when TEXies meet in per
son (user group meetings) or online (support platforms), some folk always seem to
pop-up and speak about tokens. When you try to explain something to a user, it
makes sense to talk in terms of characters, but soon those tokenspeakers jump in
and start correcting you. In the past I have been puzzled by this because when one
can write a decent macro that does the job well, it really doesn’t matter if one knows
about tokens. Of course one should never make the assumption that tokenspeak
ers really know TEX that well or can come up with better solutions than users but
that is another matter.1

That said, since the word ‘token’ does pop-up in documents about TEX, I will try to
give you some insights even if it’s mostly irrelevant when using TEX. The descrip
tions below won’t match the proper tokenspeak criteria for sure. This is why at the
presentation for the 2020 user meeting, I used the title “Tokens As I See Them.”

2. What are tokens?
Both the words ‘node’ and ‘token’ are quite common in programming and also rather
old, proven by the fact that they are also used in the TEX source. A node is a stor
age container that is part of a linked list. When you input the characters t, e and x,
the three characters become part of the current linked list. They become ‘charac
ter’ nodes (or in LuaTEX speak ‘glyph’ nodes) with properties like the font and the
reference character. But before this happens, the three characters in the input (t,
e and x) are interpreted as just that: characters. When you enter \TeX, the input
processors first sees the backslash and because this has a special meaning in TEX, it
will read the following characters and return when done to lookup the internal hash
table. In this case, a macro that assembled the word TEX in uppercase with special
kerning and a shifted (therefore boxed) ‘E’. When you enter $, TEX will look ahead
for a second one in order to determine whether to enter display math mode, push
back the found token when there is no match and then enter inline math mode.

A token is internally just a 32-bit number that encodes what TEX has seen. It is the
assembled token that travels through the system, gets stored, interpreted and often
discarded afterwards. So, the character ‘e’ in our example gets tagged as such and

1 Talking about fashion: it would be more impressive to talk about TEX and friends as a software stack
rather than as a distribution. Today, it’s all about marketing.

29 29

29 29

contextgroup > context meeting 2020

30

encoded in a 32-bit number in a way that the intention can be derived later on.

Now, the way TEX looks at these tokens can vary. In some cases, it will just look at
the 32-bit number (for instance when checking for a specific token; which is a fast
operation) but other times, it needs to know some more details. The mentioned in
teger actually encodes a command (opcode) and a so-called ‘char code’ (operand).
The second name is somewhat confusing because in many cases the char code does
not represent a character (although this is not relevant here). When you look at the
source code of a TEX engine, it is enough to know that a char can also be a sub com
mand.

token = cmd chr

Back to the three characters: these become tokens where the command code in
dicates that it is a letter and the char code indicates what letter we have at hand;
and in the case of LuaTEX and LuaMetaTEX these are Unicode values. Contrary to
the traditional 8-bit TEX engine, in the Unicode engines an UTF sequence is read,
but these multiple bytes still become one number that will be encoded in the token
number. In order to determine that something is a letter, the engine has to be told
that it is one (which is what a macro package does when it sets up the engine). For
instance, digits are so-called ‘other characters’ and the backslash is called ‘escape’.
Every TEX user knows that curly braces are special, and so are dollar symbols and
hashes. If this rings a bell, and you relate this to catcodes, you can indeed assume
that the command codes of these tokens have the same numbers as the catcodes.
Given that Unicode has plenty of character slots you can imagine that combining 16
catcode commands with all the possible Unicode values makes a large repertoire of
tokens.

There are more commands than the 16 basic characterrelated ones. In LuaMetaTEX
we have just over 150 command codes and LuaTEX has a few more but they are also
organized differently. Each of these codes can have a subcommand. For instance,
the primitives \vbox and \hbox are both a make_box_cmd (we use the symbolic name
here) and in LuaMetaTEX the first one has subcommand code 9 (vbox_code) and the
second one has code 10 (hbox_code). There are twelve primitives in the same sub
command category. The many primitives that make up the core of the engine are
grouped in a way that permits the processing of similar ones with one function, and
also makes it possible to distinguish between the way commands are handled, for
instance with respect to expansion.

Now, before we move on, it is important to know that all these codes are in fact
abstract numbers. Although it is quite likely that engines that are derived from each
other have similar numbers (just more), this is not the case for LuaMetaTEX. Because
the internals have been opened up (even more than in LuaTEX), the command and
char codes have been reorganized in a such a way that the exposure is consistent.
We could not use some of the reuse and remap tricks that the other engines use
because it would simply be too confusing (and demand real in-depth knowledge of
the internals). This is also the reason why development has taken some time. You

30 30

30 30

tokens > hans hagen

31

probably won’t notice it from the current source code but it was a very stepwise
process. We not only had to make sure that it all kept working (ConTEXt LMTX and
LuaMetaTEX were pretty useable during the process), but we also had to (re)consider
intermediate choices.

So, input is converted into tokens, and in most cases one-by-one. When a token is
assembled, it either gets stored (deliberately or as part of some look ahead scan
ning), or it immediately gets (what is called) ‘expanded’. Depending on what the
command is, some action is triggered. For instance, a character gets appended to
the node list immediately. An \hbox command will start assembling a box with its
own node list that is then processed. If the primitive was a follow-up on \setbox it
would get stored, otherwise it might end up in the current node list as a so-called
hlist node. Commands that relate to registers have 0xFFFF char codes because that
is how many registers we have per category.

When a token gets stored for later processing, it becomes part of a larger data struc
ture, a so called ‘memory word’. These memory words store a token and some addi
tional properties, and are taken from a large pool of such memory words. The ‘info’
field contains the token value, the aforementioned command and char. When there
is no linked list, the link can be used to store a value; something that we actually do
in LuaMetaTEX.

1 info link
2 info link
3 info link
n info link

When, for instance, we say \toks 0 {tex}, the scanner sees an escape followed by
4 letters (toks) and the escape triggers a lookup of the primitive (or macro or . . .)
with that name; in this case, a primitive assignment command. The found primitive
(its property gets stored in the token) triggers scanning for a number and when that
is successful, scanning of a brace delimited token list starts. The three characters
become threeletter tokens, which are linked lists of the aforementioned memory
words. This list then gets stored in token register zero. The input sequence \the
\toks 0 will return a copy of this list back into the input.

In addition to the token memory pool, there is also a table of equivalents. This one is
part of a larger table of memory words where TEX stores everything it needs to keep.
The 16 groups of character commands are virtual. Storing these makes no sense so
the first real entries are all the registers (count, dimension, skip, box, etc.). The rest
is taken up by possible hash entries.

31 31

31 31

contextgroup > context meeting 2020

32

main hash null control sequence
128K hash entries
frozen control sequences
special sequences (undefined)

registers 17 internal & 64K user glues
4 internal & 64K user mu glues
12 internal & 64K user tokens
2 internal & 64K user boxes
116 internal & 64K user integers
0 internal & 64K user attribute
22 internal & 64K user dimensions

specifications 5 internal & 0 user
extra hash additional entries (grows dynamically)

So, a letter token t is just that, a token. A token referring to a register is again just a
number, but its char code points to a slot in the equivalents table. A macro, which we
haven’t discussed yet, is actually just a token list. When a name lookup happens, the
hash table is consulted and this table has parallel entries in the table of equivalents.
When there is a match, the corresponding entry in the equivalents table will point to
a token list.

1 string index equivalents or (next > n) index
2 string index equivalents or (next > n) index
n string index equivalents or (next > n) index

n + 1 string index equivalents or (next > n) index
n + 2 string index equivalents or (next > n) index
n + m string index equivalents or (next > n) index

It sounds complex but it is actually somewhat complex. It is not made easier by
the fact that we also track information related to grouping (saving and restoring),
that we need reference counts for copies of macros and token lists, and that some
times we need to store information directly instead of via links to token lists, etc.
And again, we cannot compare LuaMetaTEX with the other engines. Since we did
away with some of the limitations of the traditional engine, we not only saved some
memory but in the end we also simplified matters (we’re 32/64-bit after all). On the
one hand, while some traditional speedups have been removed, these have been
compensated for by improvements elsewhere, making the overall processing more
efficient.

32 32

32 32

tokens > hans hagen

33

1 level type flag value
2 level type flag value
3 level type flag value
n level type flag value

So, here LuaMetaTEX differs from other engines because it combines two tables,
which is made possible because we have at least 32 bits. There are at most 0xFFFF
levels but we need at most 0xFF types. In LuaMetaTEX, macros can have extra
properties (flags) and these also need one byte. Contrary to the other engines,
\protected macros are native and have their own command code, but \tolerant
macros duplicate that, so we have four distinct macro commands. All other proper
ties, like the \permanent ones are stored in flags.

Because a macro starts with a reference count, we have some room in the info field
to store information about it, whether the macro has arguments or not. It is these
details that make LuaMetaTEX a bit more efficient in terms of memory usage and
performance than its predecessor LuaTEX. But as with the other changes, it was a
stepwise process in order to keep the system compatible and working.

3. Some implementation details
Sometimes there is a special head token at the start of the linked list to make it
easier to append extra tokens. In traditional TEX, node lists are forward linked; in
LuaTEX they are double linked2. Token lists are always forward linked, and shared
token lists use the head node for a reference count.

For various reasons the original TEX uses temporary lists of global variables. This
is, for instance, needed when we expand (nested) and need to report issues. But
in LuaTEX we often just serialize lists, so using local variables makes more sense.
One of the first things done in LuaMetaTEX was to group all global variables into (still
global) structures, albeit well isolated ones. This also made it possible to actually
remove some globals.

Because TEX was designed to run on machines that we would nowadays consider
rather limited, it had to be sparse and efficient. There are quite a few optimiza
tions implemented to limit code and memory consumption. The engine also does
its own memory management. Freed token memory words are collected in a cache
and reused, but they can get scattered. This is not too bad although it may adversely
affect cache hits. In LuaMetaTEX, we stay as close to original TEX as possible but
there are some improvements. The Lua interfaces force us to occasionally divert
from the original design. This might, in fact, lead to some retrofitting but the original
documentation still mostly applies. However, keep in mind that in LuaTEX, we store
much more information in nodes than traditional TEX does. Each has a prev pointer,

2 On the agenda of LuaMetaTEX is to use this property in the underlying code.

33 33

33 33

contextgroup > context meeting 2020

34

an attribute list pointer and some other additional fields; for instance, glyph nodes
have some 20 extra fields compared to traditional TEX character nodes.

4. Other data management
There is plenty going on in TEX when it processes your input. Just to mention a few:

• Grouping is handled by a nesting stack.
• Nested conditionals (\if...) have their own stack.
• The values before assignments are saved on the save stack.
• Also other local changes (housekeeping) ends up in the save stack.
• Token lists and macro aliases have references pointers (reuse).
• Attributes, being linked node lists, have their own management.

In all these subsystems, tokens or references to tokens can play a role. Reading a
single character from the input can trigger a lot of action. A curly brace tagged as
a ‘begin group command’ will be pushed to the grouping level. From then registers
and some other quantities that have changed will be stored on the save stack so
that after the group ends, these quantities can be restored. When primitives take
keywords, and no match happens, tokens are pushed back into the input which in
troduces a new input level (also some stack). When numbers are read, a token that
represents no digit is pushed back too. Macro packages use numbers and dimen
sions extensively so it is a surprise that TEX is so fast.

5. Macros
There is a distinction between primitives, the built-in commands, and macros (the
commands defined by users). A primitive relates to a command code and char code
but macros are basically pointers to a token list, unless they are made an alias to
something else like \countdef and \let do. There is some additional data stored
which makes it possible to parse and grab arguments.

When we have a control sequence (macro) \controlsequence the name is looked
up in the hash table. When it is found, its value will point to the table of equiva
lents. As mentioned, that table keeps track of the cmd and points to a token list (the
meaning). We saw that this table also stores the current level of grouping and flags.

If we say in the input, \hbox to 10pt {x\hss}, the box is assembled as the tokens
are processed, and when it is appended to the current node list, there are no tokens
left to process. When scanning this input, the engine literally sees a backslash and
the four letters hbox. However, when we have this:

\def\MyMacro{\hbox to 10pt {x\hss}}

the \hbox has become one memory word which has a token representing the \hbox
primitive plus a link to the next token. The space after a control sequence is gobbled
so the next two tokens, again stored in a linked memory word, are lettertokens

34 34

34 34

tokens > hans hagen

35

followed by two others and two lettertokens for the dimensions. Then we have a
space, a brace, a letter, a primitive and a brace. The approximately 20 characters
of input became a dozen memory words, each two times four bytes so in terms of
memory usage, we end up with quite a bit more. However, when TEX runs over that
list, it only has to interpret the token values because the scanning and conversion
have already happened. So, the space that a macro takes is more than compensated
for by the efficient reprocessing.

6. Looking at tokens
When you use the \tracingall command, you will see what the engine does:
read input, expand primitives and macros, typesetting etc. You might need to set
\tracingonline to get a bit more output on the console. One way to look at macros
is to use the \meaning command, so if we have:

\permanent\protected\def\MyMacro#1#2{Do #1 or #2!}

we can say this:

\meaning \MyMacro
\meaningless\MyMacro
\meaningfull\MyMacro

and get:

protected macro:#1#2->Do #1 or #2!
#1#2->Do #1 or #2!
permanent protected macro:#1#2->Do #1 or #2!

You get just the name when you ask for the meaning of a primitive. The \meaning
full primitive gives the most information. In LuaMetaTEX protected macros are first
class commands: they have their own command code. In other engines, they are
just regular macros with an initial token indicating that they are protected. There
are specific command codes for \outer and \long macros but we dropped these
in LuaMetaTEX. Instead we have \tolerant macros but this is another story. The
flags that were mentioned earlier can mark macros in a way that permits overload
protection, as well as permit special treatment for some otherwise tricky cases (like
alignments). The overload related flags permit a rather granular way of preventing
users from redefining macros and such. They are set via prefixes, and add to that
repertoire, we have 14 prefixes, only eight of which deal with flags (we can add more
if really needed). The probably most wellknown prefix is \global, and this one will
never become a flag: it has immediate effect.

For the above definition, the \showluatokens command will show a meaning on the
console.

\showluatokens\MyMacro

35 35

35 35

contextgroup > context meeting 2020

36

This gives the next list, where the first column is the address of the token, the sec
ond one is the command code, and the third one is the char code. When there are
arguments involved, the list of what needs to get matched is shown.

permanent protected control sequence: MyMacro
501263 19 49 match argument 1
501087 19 50 match argument 2
385528 20 0 end match

501090 11 68 letter D (U+00044)
30833 11 111 letter o (U+0006F)
500776 10 32 spacer
385540 21 1 parameter reference
112057 10 32 spacer
431886 11 111 letter o (U+0006F)
30830 11 114 letter r (U+00072)
30805 10 32 spacer

500787 21 2 parameter reference
213412 12 33 other char ! (U+00021)

In the next subsections, I will show some examples. This time we use a helper de
fined in the system-tokens module:

\usemodule[system-tokens]

6.1 Example 1: in the input

\luatokentable{1 \bf{2} 3\what {!}}

given token list:
654818 12 49 other char 1 U+00031
655581 10 32 spacer
652047 132 0 protected call bf
656462 1 123 left brace
654849 12 50 other char 2 U+00032
653177 2 125 right brace
654476 10 32 spacer
654446 12 51 other char 3 U+00033
654394 119 0 undefined cs what
653170 1 123 left brace
653887 12 33 other char ! U+00021
655416 2 125 right brace

6.2 Example 2: in the input

\luatokentable{a \the\scratchcounter b \the\parindent \hbox to
10pt{x}}

36 36

36 36

tokens > hans hagen

37

given token list:
654519 11 97 letter a U+00061
652401 10 32 spacer
654938 129 0 the the
654316 85 257 register int scratchcounter
652731 11 98 letter b U+00062
655070 10 32 spacer
652654 129 0 the the
656364 88 0 internal dimen parindent
653328 30 10 make box hbox
654483 11 116 letter t U+00074
652859 11 111 letter o U+0006F
654238 10 32 spacer
652657 12 49 other char 1 U+00031
656366 12 48 other char 0 U+00030
652014 11 112 letter p U+00070
653119 11 116 letter t U+00074
655095 1 123 left brace
654115 11 120 letter x U+00078
652370 2 125 right brace

6.3 Example 3: user registers

\scratchtoks{foo \framed{\red 123}456}

\luatokentable\scratchtoks

token register: scratchtoks
653239 11 102 letter f U+00066
651553 11 111 letter o U+0006F
653011 11 111 letter o U+0006F
652400 10 32 spacer
650534 135 0 tolerant protected call framed
654522 1 123 left brace
653666 132 0 protected call red
654939 12 49 other char 1 U+00031
655001 12 50 other char 2 U+00032
652733 12 51 other char 3 U+00033
655742 2 125 right brace
656485 12 52 other char 4 U+00034
656245 12 53 other char 5 U+00035
291878 12 54 other char 6 U+00036

6.4 Example 4: internal variables

\luatokentable\everypar

internal token variable: everypar
652275 132 0 protected call dotagsetparcounter
653066 132 0 protected call page_otr_command_synchronize_side_floats
652527 132 0 protected call checkindentation
653213 131 0 call showparagraphnumber
653786 132 0 protected call restoreinterlinepenalty

37 37

37 37

contextgroup > context meeting 2020

38

653728 131 0 call flushnotes
654553 132 0 protected call registerparoptions
654003 131 0 call flushpostponednodedata
656318 131 0 call typo_delimited_repeat
653835 131 0 call spac_paragraphs_flush_intro
655388 131 0 call typo_initial_handle
656894 131 0 call typo_firstline_handle
653683 131 0 call spac_paragraph_wrap
656402 132 0 protected call spac_paragraph_freeze

6.5 Example 5: macro definitions

\protected\def\whatever#1[#2](#3)\relax
{oeps #1 and #2 & #3 done ## error}

\luatokentable\whatever

protected control sequence: whatever
654851 19 49 match argument 1
656549 12 91 other char [U+0005B
651965 19 50 match argument 2
654812 12 93 other char] U+0005D
654903 12 40 other char (U+00028
652258 19 51 match argument 3
651906 12 41 other char) U+00029
651871 16 0 relax relax
652010 20 0 end match
651468 11 111 letter o U+0006F
655309 11 101 letter e U+00065
651491 11 112 letter p U+00070
652656 11 115 letter s U+00073
654837 10 32 spacer
150496 21 1 parameter reference
652586 10 32 spacer
652111 11 97 letter a U+00061
655292 11 110 letter n U+0006E
652838 11 100 letter d U+00064
651998 10 32 spacer
653176 21 2 parameter reference
655491 10 32 spacer
656546 12 38 other char & U+00026
652018 10 32 spacer
658198 21 3 parameter reference
655541 10 32 spacer
655383 11 100 letter d U+00064
654373 11 111 letter o U+0006F
656288 11 110 letter n U+0006E
655762 11 101 letter e U+00065
653339 10 32 spacer
652800 6 35 parameter
651511 10 32 spacer
652693 11 101 letter e U+00065
655195 11 114 letter r U+00072
654332 11 114 letter r U+00072

38 38

38 38

tokens > hans hagen

39

652764 11 111 letter o U+0006F
655939 11 114 letter r U+00072

6.6 Example 6: commands

\luatokentable\startitemize

frozen instance protected control sequence: startitemize
652854 135 0 tolerant protected call startitemgroup
658207 12 91 other char [U+0005B
655907 11 105 letter i U+00069
654234 11 116 letter t U+00074
654137 11 101 letter e U+00065
653596 11 109 letter m U+0006D
653468 11 105 letter i U+00069
653159 11 122 letter z U+0007A
654444 11 101 letter e U+00065
653908 12 93 other char] U+0005D

6.7 Example 7: commands

\luatokentable\doifelse

permanent protected control sequence: doifelse
653143 19 49 match argument 1
656590 19 50 match argument 2
656234 20 0 end match
658288 126 21 if test iftok
653842 1 123 left brace
652602 21 1 parameter reference
651850 2 125 right brace
652769 1 123 left brace
652549 21 2 parameter reference
655517 2 125 right brace
656196 120 0 expand after expandafter
653605 131 0 call firstoftwoarguments
656657 126 3 if test else
655972 120 0 expand after expandafter
652924 131 0 call secondoftwoarguments
655224 126 2 if test fi

6.8 Example 8: nothing

\luatokentable\relax

primitive control sequence: relax
652599 16 0 relax relax

39 39

39 39

contextgroup > context meeting 2020

40

6.9 Example 9: hashes

\edef\foo#1#2{(#1)(\letterhash)(#2)} \luatokentable\foo

control sequence: foo
655352 19 49 match argument 1
653257 19 50 match argument 2
655054 20 0 end match
652976 12 40 other char (U+00028
651999 21 1 parameter reference
654246 12 41 other char) U+00029
654954 12 40 other char (U+00028
656553 12 35 other char # U+00023
654494 12 41 other char) U+00029
655274 12 40 other char (U+00028
655845 21 2 parameter reference
653351 12 41 other char) U+00029

6.10 Example 10: nesting

\def\foo#1{\def\foo##1{(#1)(##1)}} \luatokentable\foo

control sequence: foo
656526 19 49 match argument 1
653870 20 0 end match
654395 115 1 def def
655739 131 0 call foo
652667 6 35 parameter
654579 12 49 other char 1 U+00031
658014 1 123 left brace
651678 12 40 other char (U+00028
653618 21 1 parameter reference
655191 12 41 other char) U+00029
656774 12 40 other char (U+00028
652487 6 35 parameter
654320 12 49 other char 1 U+00031
657716 12 41 other char) U+00029
653247 2 125 right brace

In all these examples, the numbers are to be seen as abstractions. Some command
codes and subcommand codes might change as the engine evolves. This is why the
LuaMetaTEX engine has lots of Lua functions that provide information about which
number represents what command.

40 40

40 40

