
contextgroup > context meeting 2020

14

Extensions Related to
Programming Macros
Hans Hagen

1. Introduction
Sometimes you can read (or hear) comments about TEX not being a real program
ming language or the wish for it to be more like a typical procedural language. A
discussion about this is somewhat pointless because it relates to experiences and
preferences. Also, when we mention TEX, we are talking about an interpreter, a lan
guage, a set of macros and in practice, about an ecosystem, simply because all kinds
of resources are involved—especially since the ecosystem is the one reason why a
successor has not shown up.

So, when we discuss the language aspect, it concerns a macro language. This is for a
good reason: one can mix content and operations on that content in one document
source. That source is interpreted and processed as it goes. This is contrary to a
procedural language, where one explicitly has to push content into some procedure.
There are some languages that are mixed, e. g., webpage templates where some
elements are snippets of programs and a preprocessor assembles the result.

\def\MyMacroA#1{This or #1!}
\def\MyMacroB{that}

\MyMacroA{\MyMacroB}

Here, the last line will result in “This or that!” in the output. But it must be noted
that \MyMacroB is passed as a token, and only in the body of the macro does it get
expanded into “that”.

\edef\MyMacroC{\MyMacroB}

The code above defines a new macro with the expanded text as the body. To expand
or not, that is often the question. Now compare this code with the following:

function MyFunctionA(one)
return "This or " .. one .. "!"

end
function MyFunctionB()

return "that"
end
function MyFunctionC(one)

return "This or " .. one() .. "!"
end

14 14

14 14

extensions related to programming macros > hans hagen

15

MyFunctionA("that")
MyFunctionA(MyFunctionB())
MyFunctionC(MyFunctionB)

The first function expects a string and returns a concatenation. The second function
returns a string. The first call gets a string passed and the second one too because
we call that function. But the third call passes the function itself, which is why the
third function has to call it explicitly in the function body. It is this property that, in my
opinion, complicates matters when you want to do typesetting in such a language:
the more you nest, the more dangers there are for asynchronous side effects. This
can be understood from the following example:

function MyFunctionA(one)
print("A")
return "This or " .. one .. "!"

end
function MyFunctionB()

print("B")
return "that"

end

MyFunctionA(MyFunctionB())

Here we print B before we print A. Now, one can certainly argue that despite this,
functions are easier to understand than macros (which can also have surprising side
effects). Indeed, when one works on an abstract document tree where content is
fetched from, say, a database, that might be true but most TEX users mix content
and operations.

In the following sections I will introduce some of the additional features that
LuaMetaTEX provides. These are the result of many years of experience in writing
macros and the wish to come up with readable code using native features of the
language wherever possible. Of course, in ConTEXt we have a high level interface
for dealing with typographical constructs and properties, but deep down the code
looks less clear. Putting layer upon layer doesn’t help much either, so we are not
taking that route. Using funny characters like !?@_: doesn’t make things look bet
ter either. We do have lots of so-called lowlevel macros but it doesn’t make much
sense to come up with a pseudo-programming layer while in fact the engine could
make better facilities available; so this is the route we follow. After decades it had
become clear that none of the successor TEX variants had filled in the gaps in this
way, so at some point I decided that LuaMetaTEX should do it (at least for ConTEXt).

While ConTEXt MkII was written for the more traditional engines pdfTEX and X ETEX,
MkIV targets LuaTEX. It resulted in a rewrite of many components and a freeze of
MkII. It made no sense to cripple ourselves, but in the end we went further than
we had originally intended. Then, when LuaMetaTEX development started, again a
rewrite happened, but this time the reason was to make the code base a bit more

15 15

15 15

contextgroup > context meeting 2020

16

efficient (less indirectness) by using extended native functionality. Apart from other
benefits of this new engine, it gave us a cleaner code base with fewer layers. This
is why ConTEXt LMTX (a.k.a. MkXL) has been splitoff from the MkIV code base to
protect it from harmful changes. All that said, I do admit that lacking other TEX chal
lenges, it is also fun to explore new avenues.

2. Conditions
It must be said that when one goes even a little beyond simple TEX programming,
one could indeed wish for a bit more comfort. Take this:1

\def\MyMacro#1#2%
{\ifdim\dimexpr#1\relax<\dimexpr#2\relax

less%
\else\ifdim\dimexpr#1\relax=\dimexpr#2\relax
equal%

\else
more%

\fi\fi}

One needs to keep track of the nesting here in order to have the right number of
\fis.

\def\doifelse#1#2#3#4%
{\edef\a{#1}\edef\b{#1}%
\ifx\a\b#3\else#4\fi}

The temporary macros are needed in order to be able to compare the expanded
meanings. But when #3 and #4 are macros that look ahead you can imagine that
when they see \else or \fi things can get confused. Compare this to:

function doifelse(a,b,c,d)
if a == b then

c()
else

d()
end

end

Here the compiler creates code that calls either c() or d() without them having to
bother about leaving the condition. In TEX-speak we would need to have something
like this:

1 We use a \dimexpr because we cannot use a terminal percentage or space if we want to be fully expand
able and don’t want spaces to creep in after one token arguments.

16 16

16 16

extensions related to programming macros > hans hagen

17

\def\firstoftwoarguments #1#2{#1}
\def\secondoftwoarguments#1#2{#2}
\def\doifelse#1#2#3#4%
{\edef\a{#1}\edef\b{#1}%
\ifx\a\b
\expandafter\firstoftwoarguments

\else
\expandafter\secondoftwoarguments

\fi}

And when you try that with the first example where we had a nested condition, you
can imagine that it quickly starts looking complex. Another aspect of the last macro
is that it uses two temporary macros that must have names that don’t clash, meaning
that the ones we have chosen here are pretty bad. I will come back to dealing with
this later.

One gets accustomed to this complexity, and often this kind of code is hidden from
the user so only macro writers are victims here. But, being one myself, the question
is, can we make the code cleaner?

Let’s redo the first example with LuaMetaTEX:

\def\MyMacro#1#2%
{\ifdim\dimexpr#1\relax<\dimexpr#2\relax

less%
\orelse\ifdim\dimexpr#1\relax=\dimexpr#2\relax
equal%

\else
more%

\fi}

Many programming languages have something like elseif but because TEX has
quite a number of different tests, \elseifdim makes no sense but the more generic
\orelse does. We can even think of:

\def\MyMacro#1#2%
{\ifcmpdim\dimexpr#1\relax\dimexpr#2\relax

less%
\or
equal%

\else
more%

\fi}

17 17

17 17

contextgroup > context meeting 2020

18

And because LuaMetaTEX provides this test, one obstacle is gone. We leave it to the
reader to come up with a traditional TEX implementation of this:

\def\MyMacro#1#2%
{\ifcmpdim\dimexpr#1\relax\dimexpr#2\relax

\expandafter\firstofthreearguments
\or
\expandafter\secondofthreearguments

\else
\expandafter\thirdofthreearguments

\fi}

And how nice it would be to be able to do this:

\def\doifelse#1#2%
{\iftok{#1}{#2}%

\expandafter\firstoftwoarguments
\else
\expandafter\secondoftwoarguments

\fi}

And so, LuaMetaTEX has such a primitive test. Keep in mind that defining \iftok as
a macro is possible here but that won’t work well nested, even with \orelse:

\iftok{.}{.}
\orelse\iftok{..}{..}
\orelse\iftok{...}{...}
\fi

When a condition succeeds or fails, TEX enters fast scanning mode to skip over the
branch that is not used. For that it needs to know if a token is a test, which is why
defining \iftok as a macro is of no help. We could flag a macro as a test (and I
have actually played with this), but it means that we need to test a macro property
independent of the current condition handler, and that is something for later. As an
intermediate solution, we have an\ifconditionprimitive that is seen as a condition
when fast scanning happens and as a no-op when a condition is expected. In this
case the following macro has to expand to a condition itself. Something like this:

\ifcondition\mytest{.}{.}
\orelse\ifcondition\mytest{..}{..}
\orelse\ifcondition\mytest{...}{...}
\fi

Because we have Lua, there are also ways to let Lua functions behave like ‘if’ tests
but that is beyond this overview since it goes beyond the scope of the macro lan
guage. In ConTEXt we use this feature to implement some bitwise operations and
tests.

18 18

18 18

extensions related to programming macros > hans hagen

19

In the engine, we provide the following repertoire of tests: \if, \ifcat, \ifnum,
\ifdim, \ifodd, \ifvmode, \ifhmode, \ifmmode, \ifinner, \ifvoid, \ifhbox,
\ifvbox, \ifx, \iftrue, \iffalse, \ifcase, \ifdefined, \ifcsname, \if
fontchar, \ifincsname, \ifabsnum, \ifabsdim, \ifchknum, \ifchkdim, \ifcmp
num, \ifcmpdim, \ifnumval, \ifdimval, \iftok, \ifcstok, \ifcondition, \if
flags, \ifempty, \ifrelax, \ifboolean, \ifmathparameter, \ifmathstyle,
\ifarguments, \ifparameters, \ifparameter, \ifhastok, \ifhastoks and
\ifhasxtoks.

Some of these are variants of \ifcase and are needed when there are more than
two possible outcomes. In addition, there are \unless, \else, \or, \orelse and
\orunless. The new primitives are discussed in the documents that come with the
ConTEXt distribution.

With respect to testing arguments, you can also use the pseudo-counter \lastar
guments (watch the ‘last’ in the name) and the somewhat less efficient but more
reliable \parametercount, as these are indicators of the number of passed com
mands.

3. Protection
In the previous section we mentioned that using auxiliary macros is tricky because
they can clash with existing macros. In fact, this is true for any macro! I therefore
decided to do what has been on the agenda for a while: add a mechanism that pro
tects against overloading. This is still experimental and the impact on users can only
be tested after most ConTEXt users have switched to LMTX, which may take a while.
This also means that it will take a while before the related primitives are considered
stable (although I’m sure not much will change). Let’s take a previous example:

\permanent\def\firstoftwoarguments #1#2{#1}
\permanent\def\secondoftwoarguments#1#2{#2}
\permanent\protected\def\doifelse#1#2%
{\iftok{#1}{#2}%

\expandafter\firstoftwoarguments
\else
\expandafter\secondoftwoarguments

\fi}

Here the three macros are defined as permanent. The test itself is protected against
expansion (which it has always been, so we keep it). Depending on the value of the
\overloadmode variable (discussed below) a user will get a warning or fatal error. By
default there is no checking (but I might give the \immutable prefix, also discussed
below, an “always check for it” property).

The whole repertoire of prefixes related to overload protection is given in the follow
ing table.

19 19

19 19

contextgroup > context meeting 2020

20

frozen a macro that has to be redefined in a managed way
permanent a macro that had better not be redefined
primitive a primitive that will not normally be adapted
immutable a macro or quantity that cannot be changed; it is a constant
mutable a macro that can be changed no matter how well protected it is
instance a macro marked (for instance) for generation by the user interface
overloaded when permitted the flags will be adapted
enforced all is permitted (but only in zero mode or ‘initex’ mode)
aliased the macro gets the same flags as the original

For the first five, the primitive states have no related prefix primitive; it is set by
the engine itself. Maybe someday I will decide to permit defining primitives, which
would take hardly any code to implement. Permanent macros are (as shown) those
that we don’t want users to redefine, and frozen ones are mildly protected. They can
be redefined when the \overloaded prefix is used. A mutable macro can always be
redefined (think of temporary macros), while an immutable can never be redefined.
The instance property is just a signal that we’re dealing with an instance, which can
be handy when we are tracing a macro’s execution. The \aliased prefix will copy
properties, so this:

\aliased\let\forgetaboutit\relax

makes \forgetaboutit a reference to the current meaning of \relax (because that
is what \let does) but also protects it like a primitive (because that is what \relax
is).

The \enforced prefix is special. It only has a meaning inside a macro body or to
ken register and it gets converted in a (hidden) \always prefix when in so-called ini
mode (when the format is made). This permits system macros to overload in spite
of heavy protection against it. Think of macros like \NCwhere the meaning can differ
depending on the kind of table mechanism used, or \item which can differ by en
vironment. We can protect these against overloading by the user but still redefine
them. Of course, when the overload mode is zero, all can be redefined.

The value of \overloadmode determines to what extent a user will be annoyed when
an existing macro is redefined, as shown in the table below. Such a macro can also
be an instance defined by commands like \definehighlight although these nor
mally are just \frozen \instance which means that a low level of protection only
issues a warning.

20 20

20 20

extensions related to programming macros > hans hagen

21

immutable permanent primitive frozen instance
1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. A value of 255 will freeze this para
meter. At level five and above the instance flag is also checked but no drastic action
takes place. We use this to signal to the user that a specific instance is redefined (of
course the definition macros can check for that too).

4. Alignments
In ConTEXt, many commands are defined using the prefix \protected, which is
handy when they are used in a context where expansion would not work out well,
like writing to file or inside an \edef. However, this is impossible when we use the
alignment mechanism. This has to do with the fact that the parser looks ahead to
see if we have (for instance) a \noalign primitive. And since the parser doesn’t look
inside a \protected macro, the following fails:

\protected\def\MyMacro{\noalign{\vskip 10pt}}

It also works out badly for macros that look for arguments. A dirty trick is:

\def\MyMacroA{\noalign\bgroup\MyMacroB}
\def\MyMacroB{\dosingleempty\MyMacroC}
\def\MyMacroC[#1]{....\egroup}

This somewhat overthetop approach can now (in LuaMetaTEX) be simplified to the
following. Let’s also go crazy with prefixes here:

\noaligned\permanent\tolerant\protected\def\MyMacroA[#1]%
{\noalign\bgroup....\egroup}

For the record: in LuaMetaTEX the \noalign construct can be nested which again
simplifies some (ConTEXt) code. Keep in mind that until now we could do whatever
we wanted in traditional TEX speak, apart from making such macros \protected.

5. Definitions
From the perspective of the above, it will become clear that in a system like Con
TEXt quite a number of definitions are candidates for being flagged. You also need
to think of symbolic character names or math symbols. For instance, dimensions
defined by \dimendef also get a permanent status. This means that one cannot
redefine \scratchcounter but its value can still be changed. At this moment I see

21 21

21 21

contextgroup > context meeting 2020

22

no reason to have a flag for preventing this (also because it would add overhead),
but it might become an option some day.

However, there are often quantities that need overload protection, such as constant
values. This is why we have:

\immutable \integerdef \plusone 1
\immutable \dimensiondef \onepoint 1pt
\immutable \gluespecdef \zeroskip 0pt plus 0pt minus 0pt
\immutable \mugluespecdef \onemuskip 1mu

These will never change and are a macro-like variant of registers but with an effi
cient storage model and that behave like a register. However, one cannot use the
operators like \advance on them. Their intended usage is as a constant.

Another definition-related extension involves \csname. In LuaTEX we introduced
more robust handling of \ifcsname as well as an extra accessor:

\ifcsname f o o\endcsname
\lastnamedcs % reference to the constructed \cs

\fi

as well as:

\begincsname f o o\endcsname

which doesn’t define \f o o as a ‘relaxed’ macro when it doesn’t already exist. Both
\begincsname and \lastnamedcs avoid a second name construction, as in:

\ifcsname f o o\endcsname
\csname f o o\endcsname

\fi

Keep in mind that these additions are a side effect of control sequences being in
UTF-8 format so we want to avoid unnecessary construction of temporary strings
and related expansion.

Original TEX only had \csname; 𝜀-TEX and LuaTEX added some companion primitives
to this, and LuaMetaTEX once again extends the repertoire:

\letcsname f o o\endcsname\relax
\defcsname f o o\endcsname{...}
\edefcsname f o o\endcsname{...}
\gdefcsname f o o\endcsname{...}
\xdefcsname f o o\endcsname{...}

This saves passing some arguments to a helper like \setvalue, which is a bit more
efficient, and it also saves a token. (The ConTEXt format file became quite a bit
smaller when the extensions discussed here were applied.) The \ifcsname primi
tive has been made somewhat more efficient by honoring macros that were defined
as \protected which (we think) means: don’t expand me in those cases where it

22 22

22 22

extensions related to programming macros > hans hagen

23

makes no sense. So here we have an (in my opinion) acceptable downward incom
patibility with engines that conform to 𝜀-TEX.

There are a few more definitionrelated new primitives, like:

\glet\MyMacroA\MyMacroB % shortcut for \global\let
\swapcsvalues\MyMacroA\MyMacroB % also works for registers
\futuredef\DoWhatever\MyMacro{...}
\expand\MyProtectedMacro % \protected like this

6. Arguments
Let’s start with a teaser. A previous definition needed a helper to gobble one of two
arguments. The following does the same but it just gobbles and doesn’t store the
argument, which is why we use #1 in both cases. This avoids storing token lists for
the unused arguments.

\permanent\def\firstoftwoarguments #1#-{#1}
\permanent\def\secondoftwoarguments#-#1{#1}

Because anything other than a digit after a # triggers an error, I saw no reason not to
support some more characters: it doesn’t hurt downward compatibility, unless you
use TEX to generate error messages. Here is the full list of extensions, of which I will
discuss a few (more can be found in the ConTEXt distribution and source code).

+ keep the braces
- discard and don’t count the argument
/ remove leading and trailing spaces and pars
= braces are mandatory
_ braces are mandatory and kept
^ keep leading spaces
1-9 an argument
0 discard but count the argument
* ignore spaces
: pick up scanning here
; quit scanning

We have a few useful characters left, such as < and > so who knows what future
extensions might show up?

Delimited arguments are used frequently in ConTEXt; take this:

\def\MyMacro[#1][#2]{...}

Here the call is rather sensitive, for instance this will fail:

\MyMacro[A] [B]

23 23

23 23

contextgroup > context meeting 2020

24

We can cheat and define:

\def\MyMacro[#1]#2[#3]{...}

in which case #2 gets what sits between the brackets. But still these two arguments
have to be given. So, in MkII and MkIV you will find indirectness like the following:

\def\MyMacro{\dodoubleempty\doMyMacro}
\def\doMyMacro[#1][#2]{}

However, in LMTX you can find this alternative:

\tolerant\def\MyMacro[#1]#*[#2]{...}

The \tolerant will make the parser quit when no match can be made and the #*
will gobble spaces. In fact, we often do this:

\tolerant\protected\def\MyMacro[#1]#*[#2]{...}

and if we want overload protection:

\permanent\tolerant\protected\def\MyMacro[#1]#*[#2]{...}

The combination of \tolerant and \protected with either expansion or not of a
macro gives four variants of low-level macro commands: normal, tolerant normal,
protected and tolerant protected. In LuaTEX that protection against expansion is im
plemented in a more indirect way, just like in 𝜀-TEX. There we also have \long and
\outer properties so we have normal, long normal, outer normal and long outer nor
mal. Making protected against expansion a native command would have given an
other four command codes. Combining this with \tolerantwould again double it so
we then would end up with 16 command codes. But in LuaMetaTEX we dropped the
\long and \outer properties. In ConTEXt we never used \outer and always want
\long anyway.

The reason for mentioning these details is to make clear that the introduced over
head is negligible when we compare it to LuaTEX. Apart from the fact that we gain
from the expansion protection being a first class feature, macros without arguments
are being stored more efficiently, the parser is a little better optimized, and so on.

But of course the biggest benefit is that, when we look at the example above, we
avoid indirectness. It looks nicer. It gives less clutter in tracing. It takes fewer to
kens in the format (where each token takes eight bytes). It runs a little faster. It
demands no trickery. Take your choice. For the record: you don’t want to know what
the set of \dodoubleempty macros looks like, as they themselves use indirectness
and are highly optimized for performance.

The list of possible features has more than skipping spaces. Here’s another exam
ple:

\tolerant\def\MyMacro[#1]#;(#2){<#1#2>}

24 24

24 24

extensions related to programming macros > hans hagen

25

Here \MyMacro accepts [A] and then quits or, when not seen, checks for (A) and
when not found is still happy. So, either #1 or #2 has a value. How do we know
which arguments got grabbed? There are several ways to find out:

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifarguments

% zero arguments
\or
% one argument

\else
% two arguments

\fi}

This test uses the count from the last expansion so if any macro expansion happens
before the test, you can get the wrong value! The next test provides feedback about
which argument received a value:

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifparameters

% all empty
\or
% first has value

\else
% second has value

\fi}

But this still may not be enough so we can also explicitly test for a parameter. Again
be aware of the nesting:

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifparameter#1\or

% first has value
\fi
\ifparameter#2\or
% second has value

\fi}

This is pretty robust but it expands the arguments in the test:

\tolerant\def\MyMacro[#1]#;(#2)%
{\unless\iftok{#1}{}%

% first has value
\fi
\unless\iftok{#2}{}%
% second has value

\fi}

25 25

25 25

contextgroup > context meeting 2020

26

When we use a colon instead of a semicolon the parser knows where to pick up after
a match fails:

\tolerant\def\MyMacro[#1]#:#2{...}

So, the argument between brackets is optional and the single token or braced sec
ond argument (turned into a token list) is mandatory.

The other extensions more or less speak for themselves: they grab arguments and
discard or keep braces and such, in cases where TEX would treat them specially
when storing or passing them on.

Speaking of braces, in spite of what one might expect (assuming that braces are
more a TEX thing than brackets), the following two definitions perform equally well:

\def\foo[#1]{} \foo[1]
\def\foo #1{} \foo{1}

but:

\def\oof[#1]{}
\def\foo{\dosingleempty\oof}

performs more that five times worse than this:

\tolerant\def\foo[#1]{}

So, the added overhead in the argument parser (and there is some, also because we
keep track of more) gets compensated well by the fact that we can avoid indirect
ness. The impact on an average document would probably go unnoticed.

As with much in TEX, you need to be aware of (intentional) side effects. Take for
instance:

\tolerant\def\foo#1[#2]#*[#3]{\edef\ofo{#1}}
\def\oof{\foo{oeps}}

This will probably not do what you expect. It has to do with how TEX interprets
spaces in the context of argument parsing: they can become part of the argument
(here #1) so anything before the first seen left bracket becomes the argument’s
value.

\tolerant\def\foo#1#*[#2]#*[#3]{\edef\ofo{#1}}
\def\oof{\foo{oeps}}

This works because the first #* directive stops scanning for the first argument. It
then gobbles spaces when they are seen before continuing to look for the bracketed
arguments. So TEX’s charm is still there.

26 26

26 26

extensions related to programming macros > hans hagen

27

7. Introspection
Because macros have more properties and variation in arguments the \meaning
command has a companion \meaningfull that displays what prefixes were applied.
The \meaningless variant only shows the body.

Quite some effort went into normalizing the so-called command codes. Primitives
are grouped into categories with similar treatments in order to keep the main loop
efficient. These codes also determine the expansion contexts (think of usage in
an \edef, how they get serialized, for instance in messages etc.). The char codes
(called such because in most cases tokens represent characters of some kind) dis
tinguish commands in these groups. Think of \def and \edef being call commands
with a different code. This rather intrusive (internal) regrouping of primitives was
needed in order to get a more consistent Lua token interface. So, for instance the
codes are now in consecutive ranges, registers are split into internal and user vari
ants, etc.

Also, memory management has been overhauled so we have a more dynamic allo
cation of various data structures (stacks, equivalents, tokens, nodes, etc.) and we
use the whole 64-bit memory word to save some memory in places too. All this is
the reason why it is unlikely that much will get backported to LuaTEX. Also, in ConTEXt
we now have a special version for LuaMetaTEX: LMTX.

8. There is more
Here we’ve discussed only the primitives that make the source look better while
also making it more convenient. But it is worth mentioning that there are primitives
like \toksapp and \etokspre that append and prepend tokens to a register (there
are eight variants). There are ways to collect tokens for just before or after a group
ends. There are some new expansionrelated primitives like \expandtoken that can
be used to inject a token with some specific catcode, just like one can define active
characters without the need for dirty uppercase tricks.

The typesetting department also has extensions. We can freeze paragraph proper
ties, adjust math parameters locally, normalize lines so that at the Lua end we know
what to expect (think of consistent presence of left and right skip, left and right shape
related properties, left and right parfill skips, indentation being glue, etc.). Hyphen
ation can be controlled in more detail too, and left and right side ligatures and kerns
can be influenced in the running text and go with glyphs. Talking of glyphs, there are
advanced scaling options as well as support for influencing placement in the running
text, which permits more efficient font handling. Boxes have more properties too:
they can have offsets, an orientation, etc. which makes implementing vertical type
setting a bit easier. Rules also have shifts. We can register actions to be expanded
at the end of a paragraph. All this evolved over time and has been tested in ConTEXt
but will be applied more frequently after the complete code split between MkIV and
LMTX. That process goes hand-in-hand with adapting to the new situation, removing
old (obsolete) variants, removing still present experimental code, etc.

27 27

27 27

contextgroup > context meeting 2020

28

There is more but hopefully this gives an impression of how substantial the
LuaMetaTEX engine differs (in added functionality) with its predecessors. Maybe it
looks a bit over the top, but I did actually reject some ideas after experimenting with
them. On the other hand, there are still some ideas on the agenda. For instance, the
engine can migrate and carry around so-called ‘deeply buried inserts’ pretty well
now. However, dealing with inserts could be made a bit easier (think of columns),
so we’re not done yet.

It should be noted that, contrary to what one might expect, the code base is still
quite okay and the binary stays well below 3 MB. In the meantime, memory man
agement has also improved and the format file gotten smaller. A lot of the inter
nal reorganization relates to the fact that we have a Lua interface which exposes
internals, thereby demanding consistency, avoidance of (often clever) tricks, more
abstraction, etc.

It is also worth noting that we can only do such a massive operation because users
are willing to test intermediate versions (sometimes on very large projects) and be
cause all changes in the code base are meticulously checked by Wolfgang Schuster
who knows TEX and ConTEXt inside out. And of course we have Mojca Miklavec’s
compile farm to keep them available for all relevant platforms, where we use a mix
of gcc (also with cross compilation), clang and msvc for various platforms. It defi
nitely helps that compilations are fast (due to the refactored code base) and that I
can use Visual Studio to work with the code.

In this summary I have only covered some of the aspects of TEX. Another important
set of extensions concerns the MetaPost library, where token scanners are exposed,
more advanced Lua calls are possible and where obsolete bits of code have been re
moved. And we use the latest and greatest Lua 5.4—but discussing the implications
of these is for another article.

This article was first published in the spring 2021 issue of TugBoat and then in MAPS No.51.
Many thanks to Karl Berry who improved the English while copy-editing the text.

28 28

28 28

