
contextgroup > context meeting 2020

10

LuaMetaTEX
Where do we stand?
Hans Hagen

When it started

About three years ago, we conceived the idea of
LuaMetaTEX. It was presented to members at the
2018 meeting and was broadly accepted. In early
2019, the first beta version was released and by
the 2019 meeting, the first official version was
presented.

Around the time of the 2020 meeting, we had
more-or-less arrived at what I had in mind. By
the 2021 meeting, I am expecting the code to be
stable and the repositories to be set up. At the
2022 meeting we can make the official transition
from MkIV to LMTX.

Some new options are only enabled in my local
cont-exp.tex file. Knowing that Wolfgang keeps
an eye on all these changes makes me more dar
ing. We aim for less (but more efficient) macro
code that, on average, looks better.

Why it started

There was an increasing pressure for a stable
LuaTEX: no more changes to the interfaces, no
more extensions.

One can run into interesting comments on the
web (as usual), like
• The LuaTEX program has ‘many bugs’.
• The LuaTEX manual is bad.
• The LuaTEX program is too slow to be useful.
• The LuaTEX program will never end up in dis

tributions.
• The LuaTEX project is funded and developed

in a commercial setting.

I won’t comment on how I read these (demoti
vating) comments because they often says more
about the writers and their attitudes than about
LuaTEX.

It also looks like nonConTEXt users are charmed
by LuaTEX, and the more they code, the more we
need to freeze the code base.

So, hopefully, the LuaMetaTEX development does
not interfere badly with developments outside
the ConTEXt community.

The development

The summary on the next pages is partial, but
more information can be found in articles and
documents that come with the distribution.

LuaTEX started out as cweb code … this eventually
became just C … which in LuaMetaTEX has been
detached from the (complex) infrastructure.

The basic idea was to keep only the core of TEX,
dispensing with, for instance, font loading, file
handling and the backend. As a consequence the
code has been reorganized.

I experimented a lot without bothering about us
age elsewhere and so far, I like the results.

The ConTEXt distribution will at some point ship
with the source.

10 10

10 10



luametatex > hans hagen

11

File handling

All file handling goes via Lua, including the read
and write related primitives. The same is true for
terminal (console) handling.

Some parts (namely the file writing code) were
actually kind of extension code in TEX and partly
a system dependency.

The 𝜀-TEX pseudo file \scantokens primitive uses
the same mechanism as Lua does.

The macro machinery

There are extensions to the way macro argu
ments are handled, allowing for less clumsy
macros.

There are extra ‘if’ tests, making for nicer macros.

‘Else’ branches in conditions can be collapsed
using \orelse and \orunless which makes the
lowlevel code cleaner.

Tracing gives more detail about node properties
and also shows their attributes.

Some new data carriers have been added that can
be played with from Lua.

Macros can efficiently be ‘frozen’ (new) and ‘pro
tected’ (redone), and the concepts ‘long’ and
‘outer’ are gone.1

Saving and restoring is somewhat more efficient,
partly as a side effect of wider memory.

Language

Language control settings now use less parame
ters but instead use bit sets. Only basic parame
ters are stored in the format file now, and there
are all kinds of other small improvements.

Typesetting

Attributes (the lists and states) are implemented
more efficiently.

The paragraph state is stored with the paragraph.
Paragraphs can be normalized and options are
now set with bit sets. Directions are mostly gone;
it’s now up to the backend.

Boxes carry orientationrelated information (off
sets, rotation, etc). Migrated content is optionally
kept with boxes. Some nodes carry more infor
mation.

Math

Some math concepts have been extended like
the prescripts and control over styles. There are
plenty of new control details. The math parame
ter settings obey grouping in a math list.

We can have math in discretionaries in text and
more advanced discretionaries in math as well.

Fonts

Font specification information no longer uses the
string pool, which saves a lot. Of course we still
have the basic font handler. We only store what
is needed for traditional TEX font handling.

Virtual fonts are even more virtual (also a back
end thing), so we can have more features.

1 In ConTEXt macros were always ‘long’ and never ‘outer’. Most
commands were unexpandable (also in MkII, pre 𝜀-TEX). So,
users won’t notice this.

11 11

11 11



contextgroup > context meeting 2020

12

The code

Artifacts from Pascal and cweb have been re
moved.

Languages, fonts, marks etc. are no longer ‘reg
ister’-based.

The token interface is more abstract and no
longer presents strange numbers.

Some internals have been reconstructed because
of the cleaner Lua interfacing. A sideeffect of
this is better abstraction of the equivalent ranges.

The code has been made more abstract (and
looks easier in e. g. Visual Studio). Readability of
the code is constantly improving (the usual: has
to look okay in my editor).

The compile farm is used to check if compilation
works out-of-thebox. Compilation is fast and
easy, otherwise this project would not be possi
ble.

The code has been made mostly independent of
specific operating system needs. Wide charac
ters are dealt with in the Windows interfaces.

Libraries

We really want to stay lean and mean: the engine
is also a Lua engine.

All the required code is included in the distri
bution. There are a few libraries included but
these are small, old and stable. In addition, some
of helper libraries have been included such as
Pawel’s pplib library.

What we ship is what you get: ConTEXt will not de
pend on more than what we ship. If something is
updated (at all), the output is checked for differ
ences first.

The Lua engine

We use the latest (even alpha) Lua (5.4) because
LuaMetaTEX is a good test. There is no support for
LuaJIT, and the ffi interface is gone.

There is a limited set of libraries that we support,
but no code is (or will be) included.

There are less callbacks because we only have a
frontend.

There are more token scanners and some options
have been added.

Efficiency

We benefit from wider memory words allowing
some constructs to go. The core engine performs
a bit better, but there isn’t much to gain in that
regard.

The format file is smaller and no longer com
pressed. Dumping the format has been made a
bit more robust and faster.

There are more statistics (also as side effect of
memory management).

Memory management is now mostly dynamic and
utilization is much lower. The lot runs quite well
on a Raspberry Pi 4, for example. We managed to
keep the binary below 3 MB.

We want to be prepared for future architectures.

Upgraded MetaPost

All the old 8-bit font stuff has been stripped from
the MetaPost library.

The library no longer has a PostScript backend.

12 12

12 12



luametatex > hans hagen

13

It provides scanners that make extensions pos
sible. There are a few additions to the MetaPost
library, like pre/postscripts for clip and bounding
boxes.

All file I/O goes via Lua.

Praise for the users

Much has been done, and I probably have forgot
ten to mention a lot.

The number of bugs is relative small compared
to what gets changed and added. The test suite
is run frequently to check for bugs and perfor
mance.

I could only do this because the ConTEXt users are
exceedingly tolerant. Some seem to constantly
check for updates which helps with faster testing.

The ConTEXt code base gets stepwise adapted
(split files) which again forces users to test. It
takes a lot of time because we take small steps
in order not to mess up.

I would not do it without the positive attribute of
the ConTEXt users. It’s all about motivation and I
thank the ConTEXt users for providing this friendly
and non-competitive bubble!

Todo

• Maybe add some more sanity checks in order
to catch errors intruded by callbacks. Maybe
add some more tracing too.

• Explore variants, like having registers in ded
icated eqtb tables so that we can allocate
them dynamically (mostly for the fun of doing
it).

• Add some more documentation (read: ad
dition cq. remarks about where the original
documentation no longer applies, but we

have years for doing that).
• Update the manual (which is done occasion

ally in batch based on print-outs; there is no
real need to hurry because we’re still experi
menting).

• Apply some of the new stuff in LMTX. Take up
some challenges.

• Wrap up new functionality (once it’s stable)
in articles and other documents.

And LuaTEX?

Of course LuaTEX will be maintained! After all,
MkIV needs it and it serves as reference for
the front-end rendering and back-end generation
when we’re messing around with LuaMetaTEX.

It is used by LATEX and there are now also plain
inspired packages. Because there are spin-offs
(LATEX has settled on a version with built-in font
processing) we cannot change much. And LuaTEX
being nicely integrated into TEXLive is another ar
gument for not touching it too much.

I have no clue of LuaTEX usage but that fact alone
already makes an argument for being even more
careful. It’s a bad advertisement for TEX when
users who use the low level interfaces get con
fronted with conceptual changes.

So in the end not much will be backported to
LuaTEX: At some point the code base became too
different and it’s the price paid for the demanded
stability. This way we cannot introduce new bugs
and it doesn’t pay off either.

But, a few non-intrusive changes might actually
trickle into it in due time. Out of selfinterest,
it might help to share some code between MkIV
and LMTX.

13 13

13 13


