ook, WN R

contextgroup > context meeting 2019

Text Analysis of Classical Authors with ConTgXt
From Text to XML to PDF

Thomas A. Schmitz

In my classes, I often provide lists of vocabulary for the (Greek or
Latin) authors that we are studying. I use ConTgXt not only to typeset
these lists, but also as a tool for extracting them from pure text files.
The ConTgXt distribution contains a number of helpers that make it
more convenient to use than pure Lua.

Introduction

1. The Premise

The basic premise for my work is the simple fact that literary texts often use a
vocabulary that students of a language find difficult to master. This is true in any
language; for ancient Greek and Latin, the problem is exacerbated by the fact that
students cannot acquire their vocabulary by immersion or fun activities like watching
films or listening to music: they have to learn words the hard way. And there
will always be specialized, rare words that students probably will not know (and
shouldn’t be required to learn because of their rarity). This means that the reading
process of literary and poetical texts is slowed down: students have to look up too
many words in the dictionary, and reading becomes an arduous task.

One way to help would be to have a list of rare words with their translations so
students don’t have to look each word up individually. Moreover, if such a list is
produced the right way, it can help students prepare for their reading by identifying
words that are relatively common by a given author. Producing such lists is my aim
here, and I will be using ConTgXt to extract the words from a text file, textfile. txt.
These files come from an online corpus. They are machine readable and thus have a
predictable format, which makes them easy to process. In order to facilitate reading
this article, we will be using a Latin author as an example, but most of my work is
on Greek authors, and this will be relevant for some steps of the workflow. Here’s a
few lines of the poetry of the Latin author Catullus (first century BCE):

.85B.t. FLXXXVE

.85B.1t 0di et amo. quare id faciam, fortasse requiris.
.85B.2t nescio, sed fieri sentio et excrucior.
.86B.t. TLXXXVI}

.86B.1t Quintia formosast multis; mihi candida, longa,
.86B.2t rectast. haec ego sic singula confiteor;

54



O 00 J

10

text analysis of classical authors > thomas a. schmitz

.86B.3t totum illud 'formosa' nego: nam nulla venustas,
.86B.4t nulla in tam magnost corpore mica salis.
.86B.5t Lesbia formosast, quae cum pulcherrima totast,
.86B.6t tum omnibus una omnes surripuit Venezres.

2. Steps of Processing

Our task is to extract the “rare” words from this text file and present them in a
manner that is useful to students. This involves two steps:

1. Reducing the Latin words to their standard grammatical form and filtering out
words that are not relevant. Bringing this information into a format that is easy
to process with ConTgXt but can also be used with other applications, should
this be necessary. In our case, this format will be XML.

2. Typesetting the information in the XML file so that it becomes useful to stu-
dents. This step will involve more than the mere converting from XML to PDF,
as we will soon see.

Each of these steps brings its own set of challenges. Not all of them have clear and
consistent solutions — natural language processing is sometimes messy, especially
when it has to deal with highly inflected languages such as Latin and Greek. And we
will also see that some aspects of the process cannot be automated; they rely on
the understanding of a human reader competent in these languages.

Parsing, Extracting, and Filtering Words

3. The Structure of Our Table

The first challenge we have is thinking about conserving and converting the struc-
tural information that is already present in our text file. If you look at the second
line, you will see the following items:

1. After aninitial period (which is just the way the files divide parts of books and
poems), we see the number of the poem in Catullus’ book. Here, it’s counted
as “85B.” The letter “B” is an unfortunate artifact which may or not be mean-
ingful; we have to conserve it just in case it is important.

2. After another period, we see the line number within the poem; again, followed
by a letter, in this case, “t.” Again, this is an artifact of the way in which these
text files were produced; here, we know that this letter is meaningless.

3. After the numbering, there is a tabstop and the Latin text of the line.

Lines 1 and 4 are merely headers for the following poems; we want to make sure
that they are not processed.

55



contextgroup > context meeting 2019

Since ConTgXt includes not only LuaTEgX, but also a number of useful additions (such
as lpeg), we will use it for parsing our text file. We will produce a file analyze.lua
and run it with the command mtxrun --script analyze.lua textfile.txt. In
the first lines of this file, we make sure that the extensions provided by ConTgXt are
indeed available and that Lua opens the necessary files for reading and writing:

require("char-ini")

require("1-1peg")

in_file = io.open(arg[l],'r"')
out_file = io.open('parsed.xml', 'w')

Our script will read from the file that is given as an argument and write to a file named
parsed.xml.

The next step is writing an input parser that will make sure only lines containing
Latin text will be processed. We use lpeg to do this parsing. Since we know what
the structure of these lines looks like, we can build an 1peg that will test whether
every single line conforms to this structure and extract the relevant information. To
save ourselves some typing, we introduce a number of handy abbreviations:

local P, R, S, Ct, C = 1peg.P, 1lpeg.R, lpeg.S, lpeg.Ct, lpeg.C
local period = p"."
local digit = R"Q9"

local poem_letter = R"AZ"

local line_letter = pP"t"

local tabstop = P"\t"

local end_of_line = P"\n"

local rest_of_line = (1 - end_of_line)

local entire_line = period + C(digit”1l * poem_letter”0) =*

period * C(digitnr1) * line_letter * tabstop * C(xest_of_line~1)

I will not go into the details of the 1peg syntax here. Very briefly: you can build
patterns from simple elements. We define the elements of which our line consists:
periods, digits, letters, a tabstop, and then everything from this tabstop to the end
of the line. If we add a C to our 1peg pattern, it will capture its match. The last line
of the example thus defines what a line should look like and captures the relevant
parts.

We can now read our input file in_file line-by-line and check whether each line
conforms to our standard:

for line in in_file:lines() do
if entire_line:match(line) then
poem, line, all_words = entire_line:match(line)
end
end

If the line conforms, the three matches that we have defined will be assigned to
three variables, poem, 1ine, and all_words. We will then assign our words to a Lua

56



text analysis of classical authors > thomas a. schmitz

table that has the poems and lines as keys. So our table will (in a simpliflied form)
look like this:

table = §
["858"] {
["1"] = § woxrdl, woxd2, ... %,
["2"] = { wordl, woxd2, ... }

3
["86B"] = {
["1"] = § woxdl, woxd2, ... %

3
5

One thing I have learned over the years is a characteristic (you could also call it a
shortcoming) of Lua: this table is what is known as an associative array and the
poems and the line numbers are the keys that have values (which are in themselves
again tables). When you want Lua to traverse (iterate through) such an associative
array, you typically use this type of code:

for k, v in pairs (table) do
process (k) process (v)
end

The problem here is that Lua will traverse the keys k in random order. Which means
that in a poem, you may very well see the lines ordered in thisway 1, 10, 2 ...
This is not what we want. One option would be to sort the poems and lines after
we have built our tables. However, the reality of numbering poems and lines (and
paragraphs and books) in ancient texts is messy. In our case, it is certainly possible
to make Lua understand that poem 85 should come after 84 and before 86B. But
lines (or, in prose texts, paragraphs) may contain Greek or Latin characters, commas,
even other symbols. So I found myself coding exceptions to exceptions for the
sorting, which were always liable to mess up my order (or make my Lua file fail).
When I asked for help on the list, Hans cooked up a solution: he created a Lua
structure called table.oxderedhash that will allow you to loop through its keys in
the order in which they were added. This is how we populate and loop through such
an ordered table:

section_table = table.orderedhash()
for poem, poem_table in table.oxdered (section_table) do

process (poem, poem_table)
end

This way even bizarre numbering will not be a problem; the poems and lines are
preserved in the order in which they appear in the text.

57



contextgroup > context meeting 2019

4. Splitting the Text into Words

Our next step will be to split the text (which we have captured in the string variable
all_woxds) into words. First, we want to get rid of all the parts of the text that are
not words, i.e., punctuation marks, special editorial symbols, parentheses, etc. For
this, we can again use a helper that ConTgXt offers, an 1peg. replacer. It takes a Lua
table as input and replaces the first item in every pair with its second item (which
in our case will be the empty string, because we just want to remove them). Here’s
what the code would look like for a few punctuation marks:

local punctuations = lpeg.replacer {

SO
gouen, mng,
g, oy,
goum, g,

3

function punctuation_replacex(s)
return lpeg.match(punctuations, s)
end

all_words = punctuation_replacer(all_woxds)

Next, we split this text into words, which we capture in a Lua table. The helper
function 1peg.checkedsplit is provided by ConTgXt; it has the advantage that it
takes care of empty strings, which may occur if there is a whitespace before the
end-of-line marker:

local capture_table = lpeg.checkedsplit(" ", all_woxds)

For every line in our textfile.txt, we now have the words in a Lua array
capture_table. Now we need to do something with these words!

5. Reducing the Words to their Dictionary Forms

As I have mentioned, Latin is a highly inflected language. Words take extremely
different forms, depending on their declension and conjugation. One huge problem
is that the same form can be derived from a number of different words. As an
example, look at the form cane. It can be derived from four different words:

ablative singular canis “dog”

imperative singular canere “sing”
imperative singular canére “be gray”

vocative singular masculine canus “gray”

In some (rare) cases, even professional scholars may have doubts about what a
particular word means (and of course, Latin writers may have played with these

58



text analysis of classical authors > thomas a. schmitz

ambiguities). For a reader who is fluent in Latin, however, most cases will be clear,
according to the semantic and syntactic context. Maybe one day in the not too
distant future, computers will be able to take the context into consideration when
determining the dictionary form of words; scholars in the digital humanities are
working on a number of solutions. For the time being, however, all we have are
simple lists that give one (or possibly several) dictionary form(s) for every word.
Such lists can be found, e.g., at the Perseus Project or the Classical Language
Toolkit. There is a gray area where our tool will never be perfect: if we look at the
possibilities for cane, we can see that most occurrences will be derived either from
canere or from canis. If we exclude canus and canére, however, we may miss the
one really exceptional passage. And if we require intervention everytime that a form
is ambiguous, parsing would take extremely long. There is thus no ideal solution; in
the end, a human reader will have to look at these lists and double-check.

I loaded the parsing lists that I got from the Classical Language toolkit into a Lua
table foxrms. It has around 350 000 entries, which look like this:

foxrms = §
["cane"™] = "canis" ,
["canem"] = "canis" ,
["canen"] = "canis" ,
["canes"] = "canis" ,
["canesque"] = "“canis" ,
3

This allows me to reduce any word to its dictionary form. In the case where a word
is not found in this table, I want it to be visible so I append a special marker to this
word. Here is what the code looks like:

for _, word in ipairs (capture_table) do
if forms [woxd] then
woxrd = foxrms [woxd]
else
woxrd = woxrd .. "XXX"
end
end

6. Filtering Words

Our next step is to filter these words: we want to exclude all proper names (e. g., in
line 86B.1, the name Quintia). The folks at the Classical Language Toolkit have an
(incomplete) list of Latin proper names against which I check my words:

if not names_table [woxd] then
process (woxd)
end

59



contextgroup > context meeting 2019

And we want to exclude the most common words. In Germany, many students
of Latin (at least at the university level) use the Lateinischer Grund- und Aufbau-
wortschatz, which contains around 2 700 of the most common Latin words. I have
compiled these into a Lua list and filtered it again: words that are neither proper
names nor in this list of common words will be entered into our Lua table. One little
trick that I have learned along the way: the first idea would be to have these common
words as a simple Lua array:

grundwortschatz = { "ab", "abesse", "abire" %

However, checking whether a given word is in such an array is tedious. Hence, we
assign these words to a table by using them as keys and assigning them a default
value:

grundwortschatz = {
["ab"] = tzxue,
["abesse"] = txue,
["abire"] = true

3
This way, it is easier and much faster to check if a word is in the list:

if not names_table [woxd] then
if not grundwortschatz [woxrd] then
table.insexrt(table [poem] [line], woxd)
end
end

After applying all these operations to our two poems, here’s what the Lua table
containing the words looks like:

table = §
["85B"]1={
["1"]1=%,
["2"]=% "excruciare" %,
o
["86B"]1={
["1"]={ "formosus" %,
["2"]1={%,

["3"]=% "formosus" },

[II4II]={ "micare", "salum" },
["5"]={ "formosus" %,
["6"]={ "surripere" %,

&y

3

If you're fluent in Latin, you will see that both derivations for l. 86.4 are, in fact,
wrong: mica here is notimperative of the verb micare “glitter,” but rather nominative
singular of the noun mica “crumb.” salis is not dative/ablative plural of salum “high

60



text analysis of classical authors > thomas a. schmitz

sea,” but rather genitive singular of sal “salt” (a word that is in the Grundwortschatz
and would need to be excluded). This is something that has to be corrected in the
proofreading stage of these lists. Moreover, you see that the lists for l. 85.1 and 86.2
are empty: these lines contain only proper names and common words. This will be
important when we now write out these lists to a file.

7. Creating an XML File

In theory, we could now write these Lua tables to a file and start the typesetting
process from there. However, I prefer to write them out to an XML file, for several
reasons: XML is easier to read for a human than the Lua tables and, as a universal
format, it can be repurposed for other uses than typesetting. Once we have our
Lua tables in place, we can simply iterate through them and write everything to our
out_file:

for poem, poem_table in table.oxdered (section_table) do
out_file:write(' <section number="")
out_file:write(poem)
out_file:write('">\n")

end

Within this loop, we process the single lines of every poem. Here, we are careful to
include lines only if they contain a word list:

for line, line_table in table.oxdered (poem_table) do
if #line_table > 0 then
out_file:write(' <subsection label="")
out_file:write(line)
out_file:write('">\n")
end
end

Then, we write the words to the XML file by looping through the array 1ine_table. In
the end, this is what this file will look like (after applying the necessary corrections):

<authox name="Catullus">
<section label="85">
<subsection label="2">
<note type="voc">
<word>excruciare</woxrd>
</note>
</subsection>
</section>
<section label="86">
<subsection label="1">
<note type="voc">
<word>formosus, a, um</woxrd>

61



contextgroup > context meeting 2019

</note>

</subsection>

<subsection label="3">
<note type="voc">
<word>formosus, a, um</woxrd>
</note>

</subsection>

<subsection label="4">
<note type="voc">
<word>mica, ae, f</woxd>
</note>

</subsection>

<subsection label="5">
<note type="voc">
<word>formosus, a, um</woxrd>
</note>

</subsection>

<subsection label="6">
<note type="voc">
<word>surripere</word>
</note>

</subsection>

</section>
</authoxr>

8. Final Thoughts

In the preceding sections, I have shown how to use ConTgXt to parse and analyze a
text file. We could summarize this workflow in a graphic:

forms

words

common names

dic. words xml

excluded

62



text analysis of classical authors > thomas a. schmitz

While the convenience of the many 1peg helpers (defined in1-1peg.1lua) is certainly
nice to have, I have neglected one area where ConTgXt really shines, compared to
regular Lua: many string operations in Lua presuppose 8bit-wide characters and fail
as soon as your text is utf8. This is usually not a problem for Latin, but of course it’s
a huge problem for Greek. Chapter 10.6 of the document c1d-mkiv.pdf (which is
part of the distribution) explains many functions and their use.

When I first began this work, I looked at several scripting languages: Perl, which was
more or less created for this purpose, Python 3, which offers a number of powerful
structures, and finally Lua. With ConTgXt’s enhancement, Lua is by far the best fit
when it comes to processing utf8 input. And it is a lot (really a lot) faster than the
other languages.

I use the XML files created in this process not only to produce the vocabulary lists,
but also to keep my personal notes on the classical texts that I read and study in
classes; this is why it is necessary to differentiate the notes pertaining to vocabulary
by giving them an attribute voc. This will be important in the typesetting process.

Analyzing and Typesetting

9. Formats

Now that we have the XML file, we can think about the output we want to produce.
In its current stage, my typeset lists have three sections:

Nach Abschnitten 85,2-91,5
86
1|formosus, a, um wohlgebildet, schon 3x
3|formosus, a, um wohlgebildet, schon 3x
4|mica, ae, f Kriimchen, Bisschen 1x
S{formosus, a, um wohlgebildet, schon 3x
6|surripere heimlich wegnehmen, entwenden 3x

The first one simply lists the words and their German translations poem by poem,
line by line; the last column contains the additional information how often the word
occurs in the poetry of Catullus.

Mehr als einmal vorkommende Worter 6 x

irrumare maulficken 16, 1. 14; 21, 13; 28, 10; 37, 8; 74,
5
moecha, ae, Ehebrecherin 42,3.11.12. 19.20; 68, 103
tympanum, i, n Kesselpauke; Teller, Scheibenrad 63,8.9.21.29.32; 64, 261
5 x|arca, ae, (Geld-) Kasten; Geféngniszelle 23,1;24,5.8.10;25,5

basium, i, n Kuss 5,7.13;7,9;16, 12; 99, 16
charta, ae, f Papyrusblatt, Papier 1, 6; 22, 6; 36, 1. 20; 68, 46

63



contextgroup > context meeting 2019

The second section lists the words by frequency (and within each frequency range
alphabetically). This is useful for students so they can memorize words that are
particularly common in a given text.

Alphabetisch as-bi
as, assis, m As, Pfennig 1x:42,13

asinus, i, m Esel 1x:97,10

aspirare einhauchen; beistehen 1 x: 68, 64

asserere daneben pflanzen, sden 1x: 61,102

asseruare bewahren, verwahren 1x:17,16

assiduus, a, um fleiBlig, beharrlich 8 x:45,4;61,227;64,71. 242; 65, 1; 66,

88; 68, 55,92, 4

Finally, the last list gives the words and their translations in alphabetic order so
students can look up words or do comparisons with other authors.

10. The Workflow

In orderto process our file parsed. xml, we need a file containing the ConTgXt setups,
which we call style.tex. And since we want to analyze and massage the information
contained in XML with Lua, this style will be accompanied by a file style.lua. Finally,
we have an XML file latin.xml that contains the German translation to Latin words. I
have built this file over the years; it contains around 10 000 Latin words. Somewhere
at the beginning of style.tex, we have to make sure that all these files are loaded:

\registerctxluafile{style}{1.001}%
\xmlprocessfile{catullus}{parsed.xml?§?
\xmlloadonly{vocabulary}{latin.xml}§?

Schematically, this workflow could again be summarized in this graphic:

parsed.xml style.tex

style.pdf

latin.xml style.lua

64



text analysis of classical authors > thomas a. schmitz

As we have seen, the root element of parsed.xmlis named <authoxr>. Our style.tex
is a bit different from usual ConTgXt styles for processing XML. In general, we
typeset the different elements of an XML file as they occur. Here, however, we
want to capture, analyze, and transform the data in the XML file before we begin
the typesetting proper. Hence, all the processing takes place within our instructions
for this root element, and we typeset directly from Lua: we thus create a rule to
process the root element and immediately pass control to Lua:

\startxmlsetups xml:list_setups
\xmlsetsetup{#l}ix3i-3
\xmlsetsetupi#ltfauthor}{xml:*3}

\stopxmlsetups

\xmlregistersetupixml:list_setups?

\startxmlsetups xml:authoxr
\xmlfunction{#lt{author?
\stopxmlsetups

All the action thus takes place in style.lua.

11. Processing Notes in Lua

In this file, we prepare a number of Lua tables in which we will store and order the
information:

local sections_table
local alphabet_table
local frequency_table

]
M M
[N SN

Then, we move on to processing our root element. The most obvious way would be
to simply traverse the different hierarchical levels (sections, subsections) of parsed
.xml. However, as I mentioned, these subsections contain lots of elements that we
do not want to process; we are only interested in <note> elements when they have
an attribute voc. It thus makes sense to look at these elements only. Here’s the Lua
code to do this:

function xml.functions.authox(t)
for note in xml.collected(1xml.id(t), "/*%/note[@type=='vok']")
do
process (note)
end
end

This filters out all the note elements with an attribute voc. We will then process this
information to obtain a Lua table that is pretty similar to the one we have seen in the
first part of this article; the same cautions apply; i.e., we need to have our poem and

65



contextgroup > context meeting 2019

line numbers in a table.oxderedhash so we can later traverse them in the order in
which they appear in the file. I will not repeat information about these tables in this
part of the article.

In order to process the note elements, we first have to extract the Latin word:

function process(t)
local woxd = xml.text (t, "/woxrd")
end

We can now begin to populate the tables we created earlier. One will receive the
words as keys and the passages (poem and line numbers) as values so that we can
later sort the words alphabetically:

if not alphabet_table[woxd] then
alphabet_table [woxrd] = { %
alphabet_table [woxd] ["passages"] = { %
table.insexrt (alphabet_table [word].passages, passage)
alphabet_table [woxd] ["count"] = 1

else
alphabet_table [word].count = alphabet_table [woxd].count + 1
table.insexrt (alphabet_table [word].passages, passage)

end

This is how we build up the alphabetic table: for every word, we check whether it
is already in the table. If it isn’t, we create the entry, set its counter to 1, and add
the passage where it occurs. If it’s already in the table, we increment the counter
and add our passage (I have not explained how we fill the variable passage as this
is very much like populating the tables we built in the first part).

After building these two tables (sections_table and alphabet_table), we need to
populate a third table, which will have the number of occurences as keys. For this,
we traverse the alphabet_table and look at the count of each item; we only add
words that occur more than once:

for word, woxrd_tbl in pairs (alphabet_table) do
if word_tbl.count > 1 then
if not frequency_table [tostring(woxd_tbl.count)] then
frequency_table [tostring(word_tbl.count)] = § %
end
table.insexrt (frequency_table[tostring(woxd_tbl.count)], woxd)
end
end

66



text analysis of classical authors > thomas a. schmitz

12. Sorting Tables

Once all these operations have finished, we have access to our data in three Lua
tables:

1. sections_table contains the words in the sequence in which they occur in the
text and will be processed by poem and line;

2. alphabet_table has the words as keys and the passages where they occur as
values; if we want to process it, we need to sort the keys alphabetically;

3. frequency_table has the number of occurences as keys and the words as val-
ues; here, we will need to sort both the keys (numerically, in descending order)
and the values (alphabetically).

In theory, sorting table keys is not too difficult in Lua: you sort the keys, store the
sorted keys in an intermediate array and retrieve them from there. Here is a little
function that will sort keys numerically, in descending order:

function sort_descending (t)
keys = § %

for k, _ in pairs (t) do
table.insert (keys, k)
table.sort (keys, function (a, b) return tonumbex(a) >
tonumbex (b) end)
end

return keys
end

Here’s how we use this function so we can loop through frequency_table:

sorted_frequencies = sort_descending (frequency_table)

for _, £ in ipairs (sorted_frequencies) do
(do someting with £ and frequency_table [f])
end

The list of words that occur with frequency £ will now be in the array
frequency_table [£]. Here, we want to sort these tables alphabetically. This
becomes problematic as soon as your table contains characters other than ASCII.
For Latin, this is rarely the case but for Greek, everything is utf8. This is where
the ConTgXt extensions to Lua come in handy: we want all words to be sorted as
lowercase, unaccented characters. So we write a function:

function sort_alphabetically (t)
keys = { %

for k in pairs (t) do

LA

67



contextgroup > context meeting 2019

table.insexrt (keys, k)
table.sort (keys, function (a, b)
return characters.lowexr(characters.shaped(a))
< characters.lowexr(characters.shaped(b)) end)
end

return keys
end

With this function, we can retrieve our words in alphabetical order:

sorted_words = sort_alphabetically (frequency_table[f])

for _, word in ipairs (sorted_words) do
context (woxd)
end

The functions characters.lower() and characters.shaped() are explained in
the cld manual, chapter 11.2; they return a utf8 string in lower case and with
diacritics removed. We can use the same function to sort the keys (words) in our
alphabet_table.

13. Typesetting Huge Tables

Now that we have all the tables and sorting mechanisms in place, we can begin
the typesetting itself. One phenomenon that became apparent during my tests
with these big XML files is that the tables became extremely large, sometimes
reaching hundreds of pages. The existing table mechanisms all had problems
working with these huge tables. When I asked about it on the list, Hans created
a new table mechanism, framedtable, which is simpler than the existing tables
and can handle these huge files. This is what we will use here (even though the
dataset for Catullus is fairly small and could be compiled with the natural tables
environment, if we wanted). In order to save ourselves some typing, we create a
couple of abbreviations:

local starttable = context.startframedtable
local stoptable = context.stopframedtable

local startrow = context.startframedrow
local stoprow = context.stopframedrow

local startcell = context.startframedcell
local stopcell = context.stopframedcell

With these definitions, we can begin to loop through our Lua tables and typeset their
content. We will not go through all of them, but just provide a few examples. Let us
start with the alphabetic table; this is the easiest one to iterate through since every
table row is for just one word. So our code will look like this:

68



text analysis of classical authors > thomas a. schmitz

starttable()
for _, word in ipairs (sorted_alphabetic_words) do
staxrtrow()
startcell()
context (woxd)
stopcell ()
startcell()
context (vocabulary [woxd])
stopcell ()
staxrtcell()
context (alphabet_table [woxd].count)
context (" x")
stopcell ()
stopcolumn()
end
stoptable()

Things get a little bit more interesting for the frequency table. In general, there will
be several words for every given frequency n. We want to write this frequency only
once, for the first word; for the following words, the first column of the table should
be empty. Here’s how we do this:

starttable()
for _, frequency in ipairs (sorted_frequencies) do
staxrtrow()
startcell()
context.bold (frequency)
stopcell ()

sorted_words = sort_alphabetically (frequency_table
[frequency])
for i, word in ipairs (sorted_woxds) do
if i > 1 then
staxrtrow()
startcell()
stopcell ()
end
startcell()
context (woxd)
stopcell ()
startcell()
context (vocabulary [woxd])
stopcell ()
stopcolumn()
end
end
stoptable()

69



contextgroup > context meeting 2019

This way, when we process our root element, we first build our Lua tables, then we
typeset them. In pseudo-code, this is what the entire process looks like:

function xml.functions.authox(t)
for note in xml.collected(1xml.id(t), "/x%/note[@type=="'vok']")
do
populate (sections_table)
populate (alphabet_table)
populate (frequency_table)
typeset (sections_table)
typeset (alphabet_table)
typeset (frequency_table)
end
end

14. Using TgX

While the entire typesetting process is thus done in Lua, some parts of it are easier
to code in TgX. To provide one example, we want to set up our page headers and
tables. For this, we use named setups in our style. tex file:

\startsetups frequency_table
\setupframedtablecolumn [1]
[width=1.0cm,align=1left, style=bold]
\setupframedtablecolumn [2]
[width=4.5cm,align={normal,verytolerant?]
\setupframedtablecolumn [3]
[width=6.5cm,align={normal,verytolerant?]
\setupframedtablecolumn [4]
[width=5.0cm,align={normal,verytolerant?]
\dontcomplain
\stopsetups

In our Lua file, we can simply call these setups:

function xml.functions.authox(t)
for note in xml.collected(1xml.id(t), "/x*/note[@type=="'vok']")
do
context.setups("frequency_table")
typeset (frequency_table)
end
end

The same is true for setting up the page headers or defining markings for these
headers: it is easier to do the setups in ConTgXt and just use them in Lua.

This, then, is the full description of our workflow as outlined in the beginning: the
same Lua style file will gather, analyze, and typeset the data from our XML file.

70



text analysis of classical authors > thomas a. schmitz

15. Final Thoughts

I am certain that my code is horribly inefficient; any decent programmer could
probably point out ways how to optimize it. However, in my experiments, this is
not too important. Some of my lists are very large and accordingly take a long time
to compile; e. g., one, for the Greek author Plutarch, has around 20 000 entries and
compiles to a PDF of 1250 pages. Typesetting this file takes a long time, up to 28
minutes on my computer (which is reasonably fast); the compile time is shorter for
successive runs, when the tuc file is already present. However, ConTgXt spends most
of this time typesetting these long tables. If we comment out the typesetting part of
our Lua style and let it just process the table, the time compiling the file is reduced
to around 6 seconds. This shows that optimizing the Lua code for processing the
XML file would not be very useful; it would shave one or two seconds off a compile
time of 14-30 minutes.

Conclusion

The use of ConTeXt I have shown in this article is very specialized. Nevertheless, the
approach itself and the tools used have a much wider area of application. I hope
they will be interesting and inspiring for other users from different domains.

71



