
contextgroup > context meeting 2019

22

XML to PDF with ConTEXt
Taco Hoekwater

1. Background
One of the DocWolves product lines is an on-line production environment for doc-
uments related to decision workflows. From the users’ input, we create published
HTML pages and PDF documents.

Clients input text fragments in a web form using a heavily customized installation
of the WYSIWYG HTML editor CKEditor. We save these text fragments along with
various bits of meta-information in a MySQL database. When the editing cycle is
done and the client decides to publish their document, we combine these various
text fragments, meta-information and any needed images into either an HTML page
or an XML file. In the case of the XML file, this is then converted into PDF using
ConTEXt.

Figure 1. Example of the web-based input screen

Various Perl scripts control and monitor all stages of the document creation process.
Before being stored, the raw textual (HTML) input is passed through a parser that
removes anything that cannot be handled properly by both the HTML and the
XML-to-PDF backends. But the monitoring system starts even earlier: cut-and-
paste within CKEditor is modified to prevent weird HTML (for example from word
processing software) from entering into the input stream. Also, various options have
been disabled in CKEditor.

22 22

22 22

XML to PDF with ConTEXt > taco hoekwater

23

To make sure that we know exactly what is in our records, the input parser also
converts the angle brackets of the acceptable HTML tags into square brackets in the
stored data, and it removes any unsupported HTML attributes.

Using this intermediate format for storage means that at the output stage, the back-
end file generator can convert any and all angle brackets it encounters into character
entities, thus ensuring that the generated output is always valid XML/HTML.

Besides blocking weird (and potentially damaging) input, there is a another reason
for all the filtering. The generated published documents often have to adhere to a
specific client house style, with (for example) predefined margins, font settings, and
a page background. Thus, removing visual markup that conflicts with the house style
settings is a secondary but quite important function of the filtering system. By the
way, those style settings are also stored in our system, somewhere separate from
the actual text fragments. I do not have to explain here why that is handy, TEX users
are quite familiar with separating content from presentation, but for many outside
the TEX community this still a foreign concept.

Here is a small part of a text fragment as it is actually stored inside the database:

[p align="left" class="western" lang="fr-FR"][br /][/p][table
cellpadding="7"
cellspacing="0" width="615"][tr][td style="border: 1px solid
#000000;
padding: 0in 0.08in" valign="top" width="599"][h3 class="western"
lang="fr-FR"]RAPPORT DE PRESENTATION[/h3][h3 class="western"
lang="fr-FR"]BUDGET
PRIMITIF 2018 - EAU[/h3][/td][/tr][/table][p align="justify"
class="western"
lang="fr-FR"][br /][/p][p align="justify" class="western"
lang="fr-FR"]Le
budget du service de l’Eau s’équilibre en Dépenses et Recettes,
aussi
bien en Fonctionnement qu’en Investissement à hauteur de [b
]11 459
610,00 €, [/b]soit :[/p][p align="left" class="western"
lang="fr-FR"][br
/][/p]
....
[p align="justify" class="western" lang="en-US"][img
data-image-id="2279" height="305" src="
....
Y2UyODA1hnDS2gAAAABJRU5ErkJggg==" width="675"][/p][p
align="justify"
class="western" lang="fr-FR"][br /][/p]

23 23

23 23

contextgroup > context meeting 2019

24

There are normally no line breaks in the tag portions of the database record, the line
breaks are added here just for this example. In the actual input text, we preserve
the whitespace characters from the input.

As you can see, there is still a fair bit of HTML and CSS supported in the system.

2. CONTEXT input files
The main ConTEXt input is the generated XML file. This contains not only the
collected text fragments, but also a block of house style settings, and some meta-
information about the document.

The XML processing takes place via an environment file called dw-workflow. Most
of the content of this file is Lua code, but there is also a bit of plain TEX code and a
few ConTEXt patches included in there.

There is only one other include file, and that contains our typescript definitions.

In the future dw-workflow may be split into a few more generic modules such that
code may be reused in other DocWolves products, but for now everything is in one
(fairly long) file.

2.1 XML structure

The listing below show the general structure of the generated XML file.

<?xml version="1.0"?>
<root>

<settings>
<setting name="papersize" value="A4"/>
<setting name="textwidth" value="170"/>
<setting name="..." value="..."/>

</settings>
<documentinfo>
<meta name="DOSSIER_REF" value="1819"/>
<meta name="..." value="..."/>

<document_content>
<content format="html">

<fragment id="19804" dos_id="2157" dsd_id="5562">
<h2>asdf</h2> ...

</fragment>
<fragment>...</fragment>

</content>
</document_content>

</root>

24 24

24 24

XML to PDF with ConTEXt > taco hoekwater

25

2.2 XML settings and setup

The <meta> information is directly copied to the PDF XMP info, and otherwise
ignored.

The <setting> tag is where the style options are communicated to ConTEXt. Cur-
rently, there are about two dozen settings. As is to be expected, most of them
deal with typical page setup. There are settings that are converted into arguments
for \setuppapersize and \setuplayout, settings for \setupfootertexts and
\setupheadertexts, and settings for \switchtobodyfont.

A few of the settings are more interesting. In particular, there is a setting for the font
size and a small group of settings for setting up the optional background image for
each page.

As is customary in CSS, the document font size does not only set up the size of the
main text font, but it also sets up the relative sizes of the headings and footnotes,
the white space before and after headings, et cetera, using a multiplier of the base
font size value. And since these multiplications can produce odd body font sizes,
there is a Lua function that not only sets up the actual ConTEXt commands, but also
executes the needed \definebodyfontenvironment commands. The start of this
function looks like this:

function userdata.setupheads(argsize)
local thesize = string.gsub(argsize,"pt",'')
local size = tonumber(thesize)
local font_sizes = cssparser.typemaps.font_size
local e = math.floor(size*font_sizes['xx-large'] + 0.5)
local d = math.floor(size*font_sizes['x-large'] + 0.5)
local c = math.floor(size*font_sizes['large'] + 0.5)
local x = math.floor(size*font_sizes['small'] + 0.5)
local xx = math.floor(size*font_sizes['x-small'] + 0.5)
context.definebodyfontenvironment({e ..'pt'})
context.definebodyfontenvironment({d ..'pt'})
context.definebodyfontenvironment({c ..'pt'})
context.definebodyfontenvironment({x ..'pt'})
context.definebodyfontenvironment({xx ..'pt'})
-- h1
context.setuphead({'part'},
{align="flushleft", page='no',placehead='yes',number='no',
style='\\switchtobodyfont['..e ..'pt]\\bf ',
before='{\\blank['..xx ..'pt]}',
after='{\\blank['..xx ..'pt]}',
aligntitle='yes',
})

...

25 25

25 25

contextgroup > context meeting 2019

26

Per-client page background images are used so that we do not have to write settings
for each an every client with a special logo in the page top or bottom. We have
set up the system such that for each client, dedicated single-page PDF files are
searched for. If found, these are then added to the page on their own layer. For each
combination of document type and paper size, there are two possible PDFs: one for
the first page, and another for all following pages (often client logos are larger on the
first page of a document). Such backgrounds are searched for in four locations: the
client folder with and without paper size, and the global locations for the same (the
global locations contain single-page empty files).

The code that deals with this is:

local paths = {}
paths[#paths+1] = valueordefault

(settings.clientbackgrounddirectory .. '/'
.. settings.papersize,nil)

paths[#paths+1] = valueordefault
(settings.clientbackgrounddirectory,nil)

paths[#paths+1] = valueordefault
(settings.backgrounddirectory .. '/'

.. settings.papersize,nil)
paths[#paths+1] = valueordefault

(settings.backgrounddirectory,nil)
context.setupexternalfigures

({directory = table.concat(paths,',') })
if settings.clientbackgroundname

and #settings.clientbackgroundname>0 then
context.resetbackgroundfigure

(settings.clientbackgroundname,"1")
end

where \resetbackgroundfigure is a separate macro that makes sure that the PDF
image is included:

\def\pagebackgroundfigure{}

\def\resetbackgroundfigure#1#2%
{\gdef\outputpagen{#2}%
\gdef\pagebackgroundfigure

{\externalfigure[#1-page-\outputpagen.pdf]
[width=\the\paperwidth,height=\the\paperheight,page=1]}}

\defineoverlay[pagebackground]
[{\pagebackgroundfigure \gdef\outputpagen{n}}]

\setupbackgrounds[page]
[state=repeat,background={pagebackground}]

26 26

26 26

XML to PDF with ConTEXt > taco hoekwater

27

Now, if the above looks a bit sneaky to you? … yeah, I know!
This setup is inherited from an older (mkii) project, where continuous redefining of
the \pagebackgroundfigure was necessary. And it works fine, so I saw no reason
to implement something else.

Before getting into the actual processing of the XML, let me introduce some of
the dw-workflow code that is needed for almost all XML, and especially HTML
processing. First, there is the setup that connects XML tags to Lua functions.

\startxmlsetups xml:oursetups
\xmlsetfunction {\xmldocument}{*} {xml.functions.panic}
\xmlsetfunction {\xmldocument}{root} {xml.functions.flush}
\xmlsetfunction {\xmldocument}{settings}{xml.functions.settings}
\xmlsetfunction {\xmldocument}{setting} {xml.functions.setting}
\xmlsetfunction {\xmldocument}{document_content}

{xml.functions.document}
\xmlsetfunction {\xmldocument}{content} {xml.functions.flush}
\xmlsetfunction {\xmldocument}{fragment}{xml.functions.fragment}
\xmlsetfunction {\xmldocument}{h1} {xml.functions.h1}
...

\stopxmlsetups

\xmlregistersetup{xml:oursetups}

At the dotted line are all the functions for the separate HTML tags we support, which
are skipped here for brevity.

The \xmlsetfunction for * is a visualization trick. The panic function typesets
all child data in a bold, red, and ugly way. Even with all the precautions we take
for making sure the input is predicable, it is still possible that something sneaks
through. One example of that happening was when we updated the whole workflow
subsystem in development to support some extra tags, but we had forgotten to up-
date the dw-workflow accordingly. The panic function’s output made that mistake
clearly visible during testing.

Next up in the dw-workflow is a set of definitions like this:

\def\htmlentity#1#2#3#4{\xmlsetentity{#2}{#1}}
\def\htmltexentity#1#2#3#4{\xmltexentity{#2}{#1}}

% latin chars
\htmlentity{À}{Agrave}{192}{Capital a with grave accent}
\htmlentity{Á}{Aacute}{193}{Capital a with acute accent}
\htmltexentity{~}{nbsp}{160}{Non-breaking space}
...

There are some 250 lines of these, adding support for all of the predefined HTML
entities. ConTEXt converts numeric entities automatically, but the named HTML ver-
sions need explicit definitions. There are four arguments because this information is

27 27

27 27

contextgroup > context meeting 2019

28

converted to TEX macros from a HTML table listing all the entities. In an earlier stage
of development, the third and fourth arguments were used to typeset a ConTEXt table
for comparison to that HTML table.

2.3 XML text fragments

The text fragments are written out as <fragment> tags in the XML file, and the
content of each of those is basically HTML with a bit of optional inline CSS. Let’s
start with a bit of example listing:

<fragment id="18202" dos_id="3279" dsd_id="6980" title="no">
<p style="text-align:center;">COMMISSION &test;

PERMANENTE</p>
<p style="text-align:center;">Séance du </p>
<p style="text-align:center;">DOSSIER N°

</p>
</fragment>
<fragment id="18203" dos_id="3279" dsd_id="6980" title="no">
<table border="1" cellpadding="1" cellspacing="1"

style="width:639px;">
<tbody>
<tr>
<td style="height:22px; width:626px;">

Politique : COPY

Programma: <placeholder>Arensman

Monique</placeholder>

Opération : SOME TEXT

</td>
</tr>

</tbody>
</table>
</fragment>

Most of the attributes of the fragment tag in the XML example above are for
debugging purposes only and are ignored during typesetting. The one processed
attribute is title. As you can see in figure 1, each text fragment can have a system-
supplied heading. When that heading is not given, then we add an extra blank to
give some visual separation between adjacent text fragments.

The fragment also supports an is_framed argument, which is not used in
the above example. This creates a border around the whole fragment using
\starttextbackground. The system makes use of text backgrounds to make sure
that the fragment can still break across pages, which is an absolute requirement.

function xml.functions.fragment(t)
local framed = false

if t.at.is_framed and t.at.is_framed == 'true' then

28 28

28 28

XML to PDF with ConTEXt > taco hoekwater

29

cssparser.prependstyle
(t,"border: 1px solid black; padding: 10px;")

framed = true
end
context.flushsidefloats() -- clear left/right divs
if t.at.title and t.at.title:lower() == "no" then
context.blank({'line'})

end
if framed then
local args = textbackgroundarguments(t)
context.definetextbackground

({'fragmentbackground'.. tonumber(t.at.id)},args)
context.starttextbackground

({'fragmentbackground'.. tonumber(t.at.id)})
end
lxml.flush(t)
if framed then
context.stoptextbackground()

end
end

Rather than try to process the various background options right in the above
function, the requested frame is converted into CSS statements. The function
textbackgroundarguments() converts that CSS specification into arguments for
\definetextbackground.

3. Interpreting CSS specifications
Parsing CSS specifications is actually quite easy, especially for the only specification
format we support right now: in-line style elements. A smallish Lua function does
all of the initial work:

local P, S, C = lpeg.P, lpeg.S, lpeg.C

function cssparser.parse(t)
local result = {}
local found = {}
if t.at.style then
local function store(a,b)
found[a] = b

end
local skipspace = S(" \t")^0
local colon = P(":")
local semicolon = P(";")
local eos = P(-1)

29 29

29 29

contextgroup > context meeting 2019

30

local somevalue = (1 - (skipspace * (semicolon + eos)))^1
local somekey = (1 - (skipspace * (colon + eos)))^1
local cssmatch = ((C(somekey) * skipspace * colon

* skipspace * C(somevalue))
/store * skipspace * (semicolon + eos)
* skipspace)^1 + eos

lpeg.match(cssmatch,t.at.style)
for i,v in ipairs(cssparser.registered) do
local k = v[1]
if found[k] then
local f = v[2]
f(t,result,k,found[k])
if cssparser.inherited_trait[k] then
if found[k] ~= 'inherit' then
cssparser.inherit(t,k,found[k])

end
end
found[k]=nil

end
end
for i,v in pairs(found) do
cssparser.report('unknown css property: '..i)

end
for k,v in pairs(result) do
if v == 'inherit' then
result[k] = cssparser.inherited(t, k,

cssparser.inherited_trait[k])
elseif v == 'initial' then
result[k] = cssparser.inherited_trait[k]

end
end

end
return result

end

The first half of the above function is the LPEG match needed to split the string into
a key–value table. The second half takes care of interpreting the registered traits.
There are two separate tables that are used in this process:

cssparser.registered

is a table of CSS traits that are known to the system. Each of the array values
is a further array with two items: the name of the trait, and a processing func-
tion for that trait. These functions are then called to interpret the trait’s CSS
specification. They take care of things like converting special color names and
oddball length specifications to something ConTEXt and MetaPost understand.

30 30

30 30

XML to PDF with ConTEXt > taco hoekwater

31

The main table is an array instead of a dictionary because ordering is important
in the case of shortcut traits, as we will see later.

cssparser.inherited_trait

contains the initial values for inheritable traits. The processing taking place
here is essentially a callback, since normally inheritance is handled by the pro-
cessing functions in the previous loop.

Both arrays are set up by calls to cssparser.register:

function cssparser.register (k,f,inherited)
cssparser.registered[#cssparser.registered+1] = {k, f}
if inherited then

cssparser.inherited_trait[k] = inherited
end

end

Throughout the rest of dw-workflow, there are dozens of calls like this:

cssparser.register('font-size',
function (t,result,key,value) result[key] = value end, '11pt')

The simplest of those calls use an inline function as seen above. The more
complicated ones define the function separately, just because that produces nicer
formatting of the source. ‘Complicated’ is perhaps too big a word: the CSS parser
callbacks do not do all that much work besides verifying the input syntax and
resolving CSS shortcuts.

local function parse_padding_shortcut(t,result,key,value)
local function process(a,b,c,d)

local t,r,l,b = trlb(a,b,c,d)
result[key ..'-top'] = cssparser.htmldimension(t)
result[key ..'-bottom'] = cssparser.htmldimension(b)
result[key ..'-right'] = cssparser.htmldimension(r)
result[key ..'-left'] = cssparser.htmldimension(l)

end
local pattern = (cssparser.matches.width^-4/process)
pattern:match(value)

end

local function parse_one_padding(t,result,key,value)
local function process(a)

result[key] = cssparser.htmldimension(a)
end
local pattern = (cssparser.matches.width^1/process)
pattern:match(value)

end

31 31

31 31

contextgroup > context meeting 2019

32

cssparser.register("padding", parse_padding_shortcut)
cssparser.register("padding-left", parse_one_padding)

As you can see, there are some other helpers in the cssparser table. For example,
htmldimension converts the CSS width keywords (thin, medium, thick) into dis-
crete HTML lengths. There is also htmlcolor, which converts named colors into hex
values. The goal of these functions is not to produce the final trait value that will be
used for typesetting, but just to get rid of some of the idiosyncrasies of CSS.

The cssparser.matches table contains a small set of predefined LPEG matches for
common CSS data types. Besides width, there are definitions for length, color,
and border_style.

The previous takes care of parsing CSS specifications. But how to use them?

When inside one of the XML tag processing functions, it is normally enough to call
eithercssparser.style()orcssparser.styled(). The latter takes care of implicit
inheritance, the former just returns the locally specified CSS trait, if there is any.

function cssparser.styled(t,name)
if not t.__style then

t.__style = cssparser.parse(t)
end
if t.__style[name] then

return t.__style[name]
-- the next elseif is not done in cssparser.style
elseif cssparser.inherited_trait[name] then

return cssparser.inherited(t,name)
end
return nil

end

It is worth noting that cssparser.styled() is not just used for explicit inherit.
What it actually returns is either a local value, or the value you would get if explicit
inherit was present, even if it is not actually there. This turned out to be quite
useful, for example to query the current font size and text. Both of these are quite
often needed during processing, even in tags that do not actually inherit the value.

The functions cssparser.inherited and its companion cssparser.inherit are
used to query and set inherited traits. They actually allow arbitrary keywords, so
they can also be used to set up inheritance for ad-hoc values, as that turned out be
quite useful. For example when dealing with the implicit CSS state, as in whether
the current XML subtree is part of a floating object or not.

We have already seen cssparser.prependstyle(). In that example, it was used
with a literal CSS string. But the most prevalent use of that function is to convert
HTML attributes into CSS traits. We will see a usage example further down in this
article.

32 32

32 32

XML to PDF with ConTEXt > taco hoekwater

33

3.1 Attribute values

Some CSS attribute values can be used directly in the Lua code, like for the various
keyword-valued traits. These are commonly used for decisions in the processing
step, and do not actually need to be passed to ConTEXt. Most of the ones that do need
to be passed on can be handled by a simple hash. The table cssparser.typemaps
contains a small set of tables that map CSS keywords to ConTEXt keywords for this
purpose.

For example:

cssparser.typemaps.text_align = {
left = 'flushleft,verytolerant,extremestretch',
right = 'flushright,verytolerant,extremestretch',
center = 'center,verytolerant,extremestretch',
justify = 'verytolerant,extremestretch'

}

At the moment, there are typemaps for float, font_size, font_weight,
list_style_type, text_align and vertical_align.

Very handy, but this does not work for all attribute values. In particular, dimensions
and colors require more attention.

CSS dimensions can have a fairly elaborate list of units, and only the basic ones
actually match up with TEX dimensions. Our current system does not support all of
the possible relative CSS dimensions like ‘X percent of the viewport’ and ‘X percent
of the width of the zero’, but it does handle the absolute dimensions, em / ex, bare
numbers, and \%. We use a helper function from ConTEXt itself to convert the value
from its CSS format to a number of TEX points.

function styledimension (val, full)
if not full then

full = userdata.settings.actualwidth
else

full = string.gsub(full,"pt",'') -- just in case
full = tonumber(full)*65536

end
ret = (xml.css.dimension(val, 72/\pixelsperinch*65536,

full/100)/65536)
return ret

end

CSS colors are even more flexible. Not only are there predefined named colors as
mentioned above and the special keyword cases transparent, inherit, initial,
and currentcolor; but colors can also be specified using rgb values, hex values,
hsl values, rgba values, and hsla values. The CSS parser has already converted
the named colors and resolved inheritance into hex colors when the actual color
interpretation starts, but there is still quite a bit of processing needed.

33 33

33 33

contextgroup > context meeting 2019

34

Here is an example of some of the possibilities borrowed from w3schools.com:

<h1 style="color:Tomato;">Hello World</h1>
<h1 style="background-color:rgb(255, 99, 71);">...</h1>
<h1 style="background-color:#ff6347;">...</h1>
<h1 style="background-color:rgba(255, 99, 71, 0.5);">...</h1>

<h1 style="background-color:hsl(9, 100%, 64%);">...</h1>
<h1 style="background-color:hsla(9, 100%, 64%, 0.5);">...</h1>

hsl values and hsla values are not supported currently. We have not encountered
any HTML generating software yet that actually uses hsl, and as we do not allow the
users to key in raw HTML code, we are very unlikely to encounter such definitions.
Until we actually need these, they are not worth the hassle.

We do support transparency, both the transparent keyword and the rgba()
format. There are two separate Lua functions, texcolor() and mpcolor()
to convert the value into either \definecolor / \directcolored ConTEXt style
(r=1,b=0.45,g=0.4), or to a format that our MetaPost macros understand. The
latter is used for all arguments to \framed and \definetextbackgrounds, so it is
used much more often.

For MetaPost, hex values are converted into CSS rgb() or rgba() syntax. This is
the most straightforward way to pass around the color values in the Lua processing
code.

But it means using transparency in our MetaPost macros requires a little trick,
because the MetaFun macro for transparent colors is based on a different (and more
flexible) syntax:

def rgb(expr a,b,c) = (a/255,b/255,c/255) enddef;
def rgba(expr a,b,c,d) = (a/255,b/255,c/255,d) enddef;
def checkedcolor(expr a)=

if cmykcolor a:
transparent(1,blackpart a,

(cyanpart a, magentapart a, yellowpart a))
else:

a
fi

enddef;

4. Actual XML processing
There are some two dozen of XML tag processing functions. Some are shorter, some
are longer, but most all of them are easy to understand. Showing all of the processing
functions seems overkill, but let’s look at some of the more interesting ones in a bit
of detail.

34 34

34 34

XML to PDF with ConTEXt > taco hoekwater

35

4.1 Images

function xml.functions.img(t)
local function style(a) return cssparser.style(t,a) end
if t.at.width then

cssparser.prependstyle(t, 'width:'.. t.at.width) end
if t.at.height then

cssparser.prependstyle(t, 'height:' .. t.at.height) end
if t.at.align then

cssparser.prependstyle(t, 'text-align:' .. t.at.align) end
local args = {}
if style('width') then args.width =

texdimension(style('width')) .. 'pt'
end
if style('height') then args.height =

texdimension(style('height')) .. 'pt'
end
if not userdata.patchimagesource(t) then
t.at.src = userdata.settings.externalfigures .. '/'

.. t.at.src
end
local textalignmap = cssparser.typemaps.text_align
if style('align') then

context.startalign({textalignmap[style('align')]}) end
if cssparser.inherited(t,'infloat', 0) ~= 1 then

context.dontleavehmode() end
context.externalfigure({t.at.src}, args)
if style('align') then context.stopalign() end

end

Most noteworthy here is the call to userdata.patchimagesource(). That function
checks the HTML src attribute for the existence of inline base64 JPEG or PNG
images.

<img data-image-id="2590" height="164"
src="..."/>

If it finds one of these, it writes the binary data to a disk file and returns true. Since
those images will always be in the local directory, there is no need to prepend the
client’s image directory to the src value.
The check for the virtual infloat trait is there because if the image is not inside
of a \placefigure, then it should be handled in TEX’s horizontal mode. The
\dontleavehmode forces the start of a paragraph in that case.

4.2 Inline font switches

Some of the processing functions make use of dedicated subroutines, like the ones
for inline font switches:

35 35

35 35

contextgroup > context meeting 2019

36

function xml.functions.b(t) -- also strong
cssparser.prependstyle(t, 'font-weight:bold;font-style:inherit;')
context.start()
context.dontleavehmode()
handlefontspan(t)
lxml.flush(t)
context.stop()
context("{}")

end

The handlefontspan() routine takes care of all inline font switches and typical
 settings like color changes and text decoration options. It is used throughout
dw-workflow where -style traits need to be set.

4.3 Text blocks and structure

Similarly, there is the textbackgroundarguments() function (that we saw earlier) to
take care of typical block level traits like vertical whitespace, margins, and frames.
This makes processing <div> quite simple.

The various <h1..6> tags are simply mapped onto the ConTEXt sectioning com-
mands.

4.4 Lists

Itemization lists are a bit problematic because CSS essentially treats every item
in a list separately. The net result of that is that ConTEXt needs to start and stop
itemization lists regularly, and while that works ok, it is quite suboptimal.

function xml.functions.li(t)
if t.at.type then

cssparser.prependstyle(t,'list-style-type:' .. t.at.type)
end
cssparser.inherit(t,'inlist', true)
local typemap = cssparser.typemaps.list_style_type
local itemstyle = cssparser.style(t,'list-style-type')
if itemstyle then

context.stopitemize()
if t.at.value then

context.setupitemize({start = t.at.value})
end
context.startitemize({typemap[itemstyle]})

elseif t.at.value then
context.stopitemize()
context.setupitemize({start = t.at.value})
context.startitemize({typemap[

cssparser.styled(t,'list-style-type')]})
end

36 36

36 36

XML to PDF with ConTEXt > taco hoekwater

37

style = cssparser.styled(t,'text-align') or 'left'
context.testpage({'1'})
context.startitem()
-- \vadjust to fix vertical spacing for p
context('\\vadjust{\\kern -\\baselineskip}\\nobreak')
context.startalign({cssparser.typemaps.text_align[style]})
lxml.flush(t)
context.par()
context.stopalign()
context.stopitem()

end

The \vadjust here is particularly ugly, but it is needed because the textual input can
have item content both with and without <p> tags.

At some time in the future, we should move to a completely new list model that is
closer to how CSS thinks about list items. The CSS model for list items is much
closer to plain TEX’s way of having separate \item commands than to the more
structured ConTEXt way of having an enclosing environment. On first sight, you
would think that the ConTEXt way is very close to the HTML structure for lists. But
on closer examination, CSS allows so many low-level traits on the actual list items
that it will probably work better if we switch to something more low-level than the
\startitem …\stopitem environment. For now, these low-level CSS traits are on
the ‘unsupported’ list.

4.5 Tables

Tables are problematic as well. Not so much because of the cell formatting itself
(\bTABLE generally does a fine job of that), but because all of the possible border
styles and spacing variations around those cells.

Individual \bTD cells inside a \bTABLE are actually disguised \framed calls. This is
great in that it allows various border and background settings. But \framed by itself
is not quite powerful enough to do everything that is possible in CSS. As a result of
that, quite a large section of dw-workflow consists of small extensions to \framed
and a rather long list of MetaPost graphic definitions.

The normal \framed already has four detail values for frame: leftframe=on, etc.
Our version has a similar splits for margin, rulethickness, and framecolor. All of
these variables can be set independently. Also, the ..frame keys like leftframe
take named versions for all of the CSS border styles instead of just on or off. The
options are: dotted, solid, double, dashed, none, hidden, groove, ridge, inset,
and outset. And the color settings are a bit different as well: instead of an actual
ConTEXt color definition, they take a triplet of (r,g,b) or a quarted of (r,g,b,a).

Most of this data is passed on to MetaPost macros that take care of the actual
typesetting of the border segments. A little section of that part of dw-workflow looks
like this:

37 37

37 37

contextgroup > context meeting 2019

38

def border_left_dotdash(expr wid, col, w, h, pre, post, dist,
dotted, left, top, bottom) =

if wid>0:
pickup pencircle scaled wid;
n := floor((h-pre-post-top-bottom)/(dist));
if not odd n: n:=n-1; fi
nw := (h-pre-post-top-bottom)/n ;
linecap := butt;
draw ((wid/2+left,post+bottom)--(wid/2+left,h-pre-top))

dashed
dashpattern

(if dotted: off nw on nw else: on nw off nw fi)
withcolor checkedcolor(col);

fill (wid+left,post+bottom)--(left,post+bottom)--(left,bottom)
--cycle

withcolor checkedcolor(col);
fill (wid+left,h-pre-top)--(left,h-top)--(left,h-pre-top)

--cycle
withcolor checkedcolor(col);

fi
enddef;
def border_left_dotted

(expr wid, col, w, h, pre, post, left, top, bottom) =
border_left_dotdash
(wid,col,w,h,pre,post,wid,true, left, top, bottom)

enddef;
def border_left_dashed

(expr wid, col, w, h, pre, post, left, top, bottom) =
border_left_dotdash
(wid,col,w,h,pre,post,3*wid,false, left, top, bottom)

enddef;

The actual connection between \framed and these MetaPost definitions is done by

\startuseMPgraphic{cellbackground}
pickup pencircle scaled 0.0001;
drawdot(0,0) withcolor transparent(1,0,(1,1,1));
drawdot(\overlaywidth,\overlayheight)

withcolor transparent(1,0,(1,1,1));
border_left_\framedparameter{leftframe}
(\framedparameter{leftrulethickness},
\framedparameter{leftframecolor},
\overlaywidth,\overlayheight,
\framedparameter{toprulethickness},
\framedparameter{bottomrulethickness},
\framedparameter{leftmargin},

38 38

38 38

XML to PDF with ConTEXt > taco hoekwater

39

\framedparameter{topmargin},
\framedparameter{bottommargin});

border_right_\framedparameter{rightframe}
(\framedparameter{rightrulethickness},
\framedparameter{rightframecolor},
\overlaywidth,\overlayheight,
\framedparameter{bottomrulethickness},
\framedparameter{toprulethickness},
\framedparameter{rightmargin},
\framedparameter{bottommargin},
\framedparameter{topmargin});

border_top_\framedparameter{topframe}
(\framedparameter{toprulethickness},
\framedparameter{topframecolor},
\overlaywidth,\overlayheight,
\framedparameter{rightrulethickness},
\framedparameter{leftrulethickness},
\framedparameter{topmargin},
\framedparameter{rightmargin},
\framedparameter{leftmargin});

border_bottom_\framedparameter{bottomframe}
(\framedparameter{bottomrulethickness},
\framedparameter{bottomframecolor},
\overlaywidth,\overlayheight,
\framedparameter{leftrulethickness},
\framedparameter{rightrulethickness},
\framedparameter{bottommargin},
\framedparameter{leftmargin},
\framedparameter{rightmargin});

\stopuseMPgraphic

with the aid of a simple overlay that contains the cellbackground graphic, this is
used as the background for \framed.

In case you are wondering: the two drawdots are needed to ‘anchor’ the graphic
inside of the overlay in cases where not all sides are actually drawn.

The hardest part of table processing is support for the CSS property
border-collapse. Our current version is not quite perfect, but it comes close.
Close enough for our clients. The remaining fault is that when two borders are
collapsed into one, the ‘winning’ border should be placed in the center of the space
between the two cells. Our code does not do this recentering. In most tables, this
is fine. But the flaw is noticeable in tables where some of the rows (of a single
table) have different left and right border widths, or where some of the columns
have different top and bottom border widths. Considering the complexity of the

39 39

39 39

contextgroup > context meeting 2019

40

collapsed border model, this is a limitation that we can live with. For the moment,
at least.

Here is a cleaned up example of the kind of table input we have to process:

<table cellspacing="3"
style="width:210mm;border-collapse: separate;">

<tbody>
<tr>
<td style="height:60px;border: 6px solid orange;padding: 4px;">

6px solid orange</td>
<td style="height:60px;border: 3px solid orange;padding: 4px;">

3px solid orange</td>
</tr>
<tr>
<td style="height:60px;border: 5px inset green;padding: 4px;">

inset green</td>
<td style="height:60px;border: 5px outset green;padding: 4px;">

outset green</td>
</tr>
</tbody>

</table>

Figure 2 shows what comes out of our system.

6px solid orange 3px solid orange

inset green outset green

solid orange solid orange

inset green outset green

Figure 2. Example output of a table with and without the border-collapse: collapse setting.

40 40

40 40

XML to PDF with ConTEXt > taco hoekwater

41

5. Summary of the current project state
This project has been in development for about a year now. In that time, we solved
all of the acute problems so that we can correctly process the current input to PDF.

To that end, we:

• wrote a (partial) CSS parser

• with the help of the ntg-context mailing list we added ConTEXt support for the
CSS minheight attribute in \framed

• wrote enough code that we are supporting nearly all of the CSS table border
features

• can handle in-line images in base64 encoding

• figured out how to support transparent colors in borders.

But that does not mean that we are done. In the future:

• we will have to support more CSS properties as they become requested by our
clients

• we should implement a better solution for CSS inheritance than the current
brute-force method

• we will probably need to implement an itemization model that is closer to the
CSS approach

• and likely more stuff will pop up as we go along.

41 41

41 41

