
contextgroup > context meeting 2019

10

Sparks, tags, suffixes and subscripts
Taco Hoekwater

MetaPost variables are rather complicated things. This talk will attempt to explain
the various uses of type declarations, saves, and vardefs.

1. Introduction
MetaPost inherits almost all of its syntax and
internal structures from METAFONT. Unfortu-
nately, it did not inherit METAFONT’s documen-
tation. The MetaPost manual by John Hobby (and
later extended by the current development team)
does a fine job of explaining how to make simple
use of MetaPost and it explains where it differs
from METAFONT, but it is very light on details.
The implicit assumption is that you should have
read the METAFONT book by D. E. Knuth and if
you want to know more you should ask a META

FONT guru for help.

That perhaps made sense in the nineties, but
nowadays METAFONT usage has dwindled to
nothing (whereas MetaPost continues to be de-
veloped) and METAFONT gurus are hard to find.
The spiral-bound (cheap) version of the META

FONT book is out of print, and even if you could
find a copy of the METAFONT book, it is not an
easy read. In the late eighties when D. E. Knuth
wrote METAFONT, the terminology used for de-
scribing programming languages was quite dif-
ferent from what is popular today. Even back
then, METAFONT was an odd and very original
language, with unfamiliar concepts. It all re-
sults in a book (and a programming language)
that can only be used fully after a lot of careful
study.

An immediately obvious weird and powerful thing
about the METAFONT and MetaPost languages
is that the programs not only have the capabil-
ity of solving linear equations, but also define

a syntax to specify such equations in a partial,
deconstructed format.

Less obvious is that METAFONT and MetaPost
variable names are quite special constructs.

In my opinion, the MetaPost manual as well as
Hans Hagen’s MetaFun manual do a fine job to
explain linear equations but both authors are
short on details when it comes to the syntax for
identifiers (and variable names are an important
part of such identifiers).

What follows is my attempt at explaining how
variable names work in METAFONT and Meta-
Post. There are other peculiarities of the pro-
gramming languages that I could also write
about, but I believe variable names are the most
important things to explain for beginners.

2. Tokens, sparks and tags
As I assume all readers of this article are TEXies,
I dare predict that you are familiar with the con-
cepts of ‘primitives’ and ‘macros’; if you did any
kind of macro programming in TEX, you will also
understand what a ‘token’ means to TEX.

While TEX interprets your input file, it converts
the bytes it finds into tokens. Many tokens are
just letters of text to be typeset. Some of the
other tokens are primitive operations to TEX itself,
like e.g. \par. Other tokens are macro names,
like \section. The latter are in turn expanded,
producing more tokens to be interpreted: text
to be typeset, primitive operations, or perhaps
other macros (that will be expanded in turn as

10 10

10 10

sparks, tags, suffixes and subscripts > taco hoekwater

11

well). In the end, your input converts itself into
tokens that execute primitive operations of the
typesetting engine.

Even if you are not so familiar with the intrica-
cies of TEX, these are concepts common to any
macro language and lexicographical analyzer and
parser.

In TEX, (almost) all tokens are also commands
for the engine. The only exceptions are things
like space tokens to end number scanning and
macro arguments that are stored for later use.
Whenever you see a symbolic token like \par,
you can be sure that it instructs TEX to do some-
thing at some point. In fact, for a word in a TEX
paragraph, each individual character is a token
that instructs TEX to typeset the glyph (an actual
drawing of a particular character in a particular
font) associated with it. And when TEX sees a
digit in the right-hand side of an assignment like
\count0=123, each separate digit from left to
right instructs TEX to multiply the present value
of \count0 (starting at zero) by ten, and then
successively add that digit.

TEX has only two types of tokens: ‘control se-
quence tokens’ and ‘character tokens’. Control
sequence tokens are used for multi-letter con-
structs like primitive and macro names, and char-
acter tokens are used for everything else. To-
kenization in TEX is controlled via the so-called
\catcode or category code of the various input
characters.

MetaPost has a somewhat different repertoire of
tokens. There are ‘numeric tokens’ (floating point
numbers), ‘string tokens’ (stuff between double
quotes), and ‘symbolic tokens’ (everything else).
Numeric and string tokens are quite straightfor-
ward and can be explained succinctly but sym-
bolic tokens have to be explained in detail be-
cause they are quite different from control se-
quence tokens in TEX.

MetaPost does not have the \catcode command
of TEX. However, it does have its own internal list
of category codes, and those internal categories

are used to construct tokens using a fairly short
(but perhaps unexpected) list of rules.

When MetaPost is not in an exceptional situa-
tion like during the processing of btex …etex or
readfromwhere the standard MetaPost language
conventions do not apply, it processes input text
as follows:

If the next thing …

• is a space character, it is ignored;

• is a period character, it is ignored unless fol-
lowed by another period or by a digit (see
below for those);

• is a percent sign, everything further is ig-
nored until an end of line character is seen;

• is a decimal digit or a period followed by a
decimal digit, a numeric token is scanned
and created;

• is a double (ascii) quote, a string token is
scanned and created;

• is a left or right parenthesis, a comma, or a
semicolon, a symbolic token is created with
that value;

• is something not matched above, then it
combines with the longest following se-
quence of characters in the same internal
category as itself to become a single (multi-
letter) symbolic token.

2.1 Creation of numeric tokens

Once the start of a numeric token has been de-
tected, MetaPost runs a numeric token scanner
that is specific to the current numbersystem. In
the default scaled mode, a numeric token is the
expected combination of digits and a dot. In
the other numbersystem modes, an optional ex-
ponent can follow immediately afterwards. An
exponent specification starts with the letter e or
E, followed by an optional + or -, and then a series
of digits. No intervening spaces are allowed (this
limitation is present to ensure that the new syn-

11 11

11 11

contextgroup > context meeting 2019

12

tax for numeric tokens has as small as possible
an impact on existing MetaPost input).

Some examples of valid numeric tokens in all
number systems are:

12
0.001
.2

The double and decimal number systems also
allow numeric tokens to be created from this
input:

12E0
1e-3
.000000002E8

2.2 Creation of string tokens

Once the start of a string token has been de-
tected, MetaPost gobbles up characters from the
current input line until it finds the matching dou-
ble quote. The resulting string token consists of
the letters in between those double quotes.

2.3 Creation of symbolic tokens

When MetaPost sees a left or right parenthesis, a
comma, or a semicolon, it immediately creates a
symbolic token with just that value.

The next rule in the list of processing actions
mentioned above is what makes e.g. ‘beginfig’
be a single token. The actual internal categories
(‘classes’, in MetaPost jargon) are defined by the
list below, and they highlight some of the oddness
of the MetaPost input language.

A–Z _ a–z
< = > : |
‘ ’
+ -
/ * \
! ?
& @ $
^ ~
[
]

{ }
.

For example, this nonsensical input:

beginfig.a ====>;

produces four symbolic tokens: ‘beginfig’, ‘a’,
‘====>’, and ‘;’. The period character and the
space are ignored per the rules above.

2.4 Some things to meditate on

The statements above explain the existence of
some fairly common MetaPost symbols such as
‘beginfig’, ‘:=’, ‘..’ and ‘---’.

But it also means:

• that ‘!?!’ and ‘[[[[’ are valid symbols, which
could be defined if you so desired;

• that there can never be symbolic tokens con-
taining spaces, percent signs, double quotes,
or digits;

• that period characters are often (but not al-
ways) equivalent to spaces (in fact, MetaPost
usually replaces spaces with periods in log
reports);

• that ‘a.b.c’ is equivalent to ‘a b c’;
• that numeric tokens are never negative (neg-

ative numbers are composed of two tokens);
• that string tokens are limited to a single line

and never contain explicit double quotes
(those strings need to be created using
char).

Before reading on, make sure the above makes
sense to you. Until you grasp these tokenization
rules, you will be constantly surprised by what
MetaPost thinks your input means.

2.5 Symbolic token processing

In MetaPost, it is not necessarily the case that
a symbolic token is actually a command for the
engine (as is the case for TEX-derived engines).

Symbolic tokens in MetaPost come in two pos-
sible types: those that are actually commands,

12 12

12 12

sparks, tags, suffixes and subscripts > taco hoekwater

13

and those that are not. To make it easier to talk
about this distinction, the tokens that do signify
commands are called sparks, and the ones that
do not are called tags.

By definition, sparks are symbolic tokens that
either refer to primitive operations (e.g. :=, path,
and withcolor) or are defined to be macros (like
beginfig and fill). Because those are the two
groups of things that MetaPost considers ‘com-
mands’.

Symbolic tokens that do not refer to commands
(tags) are the building blocks to construct vari-
able names. All variable names are always con-
structed using only symbolic tokens that are tags,
never sparks (also numeric tokens can be part of
a variable name, but that will be covered later. For
now, it is important to stress that sparks like path
cannot be part of variable names).

In a simple assignment like

w := 12pt;

there are four symbolic tokens and one numeric
token: w, :=, 12, pt, and ;.

The w and pt are tags. The other two symbolic
tokens (:= and ;) are (normally) sparks.

There was the word ‘(normally)’ in the previous
sentence. That is because like in TEX, MetaPost
primitive operations are separate from the sym-
bolic tokens that are normally used to execute
them. There are options available in MetaPost to
remap those connections, as will be explained in
following sections.

Note that pt is actually a variable name. Meta-
Post does not have any built-in dimensions, so
the typical pt, cm, … specifications are actually
variables with a numeric value that are used as
a multiplier for its native system, which is Post-
Script points. For example, the typesetting point
pt is defined in the plain.mp macros as a numeric
variable with the value 0.99626 (=72/72.27) as
well as cm with the value 28.34646 (=72/2.54).

3. Variable names, suffixes and
subscripts

Before getting into the actual details of variable
names, I should explain some peculiarities of
actual variable values in MetaPost.

In MetaPost, variables are always single objects:
there are no arrays or dictionaries or objects
or other compound variables in the language
at all. Some language constructs may make it
appear as if there are arrays and object struc-
tures, but MetaPost handles these constructs in a
completely different manner from just about any
other programming languages that you may be
used to.

If you see x1 in a MetaPost language definition,
this refers to a variable that is actually called ‘x1’.
It is not the entry at index ‘1’ in the array ‘x’!

Variables in MetaPost are always strongly typed.
That type comes from a fixed list of value types
that are compiled into the binary and cannot be
altered. The list of variable types is longer than
average for a programming language: besides
variable types for numerics and strings, Meta-
Post also has types for pairs (of numbers), paths,
colors, et cetera. Those more complex variable
values have components that can be queried and
extracted separately.

For example, a variable valued as pair (the
type normally used to express two-dimensional
points) internally consists of two numerics that
can be accessed using the xpart and ypart op-
erations. While variable values are always single
objects, that does not mean that they are always
a single primitive value.

MetaPost deals with the lack of compound vari-
ables in a very interesting (or odd, depending on
your viewpoint) way: variable names in MetaPost
are not limited to a single symbolic token. In-
stead, variable names can be constructed using
partial names (like firstnames and surnames, if
you will).

13 13

13 13

contextgroup > context meeting 2019

14

The separate parts of a variable name can be ei-
ther tags (as explained above) or numeric values.

A simple example is an equation like:

x1 = 12pt;

where the x and 1 are two parts that are actually
combined into a single variable name.

So what exactly is a variable name, then? The
parsing rules say that a variable name is built
up from a tag optionally followed by a suffix.
A suffix in turn is either a subscript or a tag,
possibly followed by yet another suffix, and so
forth. A subscript is either a numeric token,
or a bracketed numeric expression (which then
should result in a known numeric value).

There is no need to pre-declare numeric variables
in MetaPost. Combined with the above parser
rules means input like

x3ab c[2.1+1] f.4 = 12pt;

is perfectly valid. It defines a single variable with
seven parts to its name: x, 3, ab, c, 3.1, f, and
.4, having a numeric value of 11.95514 (12 times
0.99626). In ‘normal’ MetaPost jargon, it starts
with a tag and has a suffix consisting of six parts.
The first, fourth, and last suffixes are subscripts,
and the other three are tags.

A subscript can be an immediate numeric token
like 3 and .4 in the above example, or it can be
a bracketed expression like [2.1+1] that directly
results in a numeric value. The brackets are
required for MetaPost to interpret the subscript
as an expression. Without them, the expression
becomes part of the enclosing expression, which
itself is usually an equation.

For example:

x3ab c 2.1+1 f. 4 = 12pt;

is also syntactically correct input (without brack-
ets and with a space between f. and 4). How-
ever, it defines an equation for two variables:

x[3]ab.c[2.1] + 1*f[4] = 12pt;

This demonstrates that it is quite possible to
write very obscure MetaPost code. To avoid con-
fusing MetaPost (and yourself!) my advice is to
always use square brackets around floating-point
variable name segments, and to always use peri-
ods instead of blanks in between tags.

Numeric tokens cannot be negative, but the re-
sult of a numeric expression can be negative. The
ability to use a numeric expression in a subscript
is very powerful as it can contain calculus oper-
ations and even contain macro calls. The only
requirement is that it has to produce a known
numeric value. The following is allowed (although
likely not very useful):

a[- floor uniformdeviate 20 + 5]
= 12pt;

The parsing rules mean that

• a string token can never be part of a variable
name,

• and neither can any spark,
• and a variable name never starts with a nu-

meric token or numeric expression.

The restriction on sparks in variable names is
a cause of common errors in MetaPost input.
Because numeric variables do not need to be
predeclared in MetaPost, it is quite common to
invent variable names on the fly. Chances are that
at some point one of those spontaneous variable
names uses a spark in some part of it, and an
error will be reported by MetaPost.

When this happens, the actual error message will
depend on the spark’s meaning, which can be
quite confusing, indeed.

4. Declarations
Earlier it was mentioned that there is no need
to pre-declare numeric variables. But numeric is
not the only variable type that MetaPost knows
about; the other types do need to be predeclared
(otherwise they default to the numeric type).

14 14

14 14

sparks, tags, suffixes and subscripts > taco hoekwater

15

In the simple cases, declarations look like this:

boolean mybool;
cmykcolor mycolor;
color mycolor;
numeric mynumber;
pair mypair;
path mypath;
pen mypen;
picture mypic;
rgbcolor mycolor;
string mystring;
transform mytransform;

For a total of ten types (color is a pre-defined
alias for rgbcolor).

While numeric variables do not need to be prede-
clared, the numeric keyword is still useful. That
is because all declaration commands completely
wipe out the current meaning of the to-be-de-
clared object, whatever it is (as does save, to be
described later).

For a slightly more complex case, you can declare
multiple variables at the same time:

path p, q;

The argument to a declaration command is not
exactly a variable name (or even a list of those), it
is a bit more complicated than that: for starters,
each element of the argument list is allowed to be
a spark. Of course, after the declaration has been
processed, any such sparks will become variable
names (as they are now tags). This may be what
you want, but it usually isn’t. MetaPost does not
give any warnings about redefining sparks in this
way, so you have to be careful!

The statement

path path;

is allowed. It will be the last working path dec-
laration in the current run, though, as it will turn
path into a variable name as well as making the
original meaning of path inaccessible.

Besides making sure you do not redeclare some-

thing important like end or z, also make sure not
to have empty entries in the declaration list. If
you do, the rule above will happily declare a vari-
able for you whose name starts with a comma, in
the process turning , into a tag and thus breaking
every following statement that uses a comma
anywhere in it!

The second big special thing about declaration
lists is that they are not allowed to contain di-
rect numeric tokens, and the only allowed brack-
eted numeric expressions are ones that are com-
pletely empty. This is because MetaPost insists
that all variables whose names are identical ex-
cept for subscript values have the same type.

You cannot have a1 be a pair and a2 be a color,
for example (nor is this a very good idea from a
code comprehension point-of-view). To enforce
this rule, you can only use so-called ‘collective
subscripts’, and the declaration would look like
this:

pair a[];

After this, both a1 and a2 become unknown vari-
ables of type pair. To be more precise: all vari-
ables whose name consists of an initial tag a
followed by a single subscript are now pairs.

If you are familiar with other programming lan-
guages, you may be tempted to look at the above
example as an array declaration. But it is not:
it just tells MetaPost that any variable with a
combined name consisting of a followed by a
numeric part will be of type pair. This does not
prohibit you from using a as if it is an array, but
it is important to realise that MetaPost does not
actually see it that way.

Internally, subscript segments are stored as a
linked list of numeric values in ascending or-
der (the difference can be significant in terms
of performance, especially for multi-dimensional
pseudo-arrays).

An important advantage of how collective sub-
script declarations like the one above work is that
it has no influence on any other variables whose

15 15

15 15

contextgroup > context meeting 2019

16

names are not of the form a plus subscript. For
example a.colr can still be a color, and if a pair
a.direction pre-existed, then it will not have
changed at all. Also, the variable a itself in not
affected (and defaults to the numeric type unless
declared otherwise). Even a nested set of vari-
able names with each level having a different type
is acceptable:

pair a;
path a[];
color a[]c;

Although, I would not necessarily recommend
setups like this in actual use, as it gets confusing
to yourself rather quickly.

A small warning: do not forget that the state-
ments

path a.path;
color a.color;

are both illegal because they would result in vari-
ables names with sparks in them. You need
something like this instead:

path a.pth;
color a.col;

5. Internal quantities
Besides user-defined variables, MetaPost also
has a number of internal variables that are used
by the MetaPost executable itself while process-
ing your input. These are officially called ‘internal
quantities’. To keep things simple, all the names
of the internal variable names are a single sym-
bolic token.

Most have numeric type:

tracingtitles
tracingequations
tracingcapsules
tracingchoices
tracingspecs
tracingcommands

tracingrestores
tracingmacros
tracingoutput
tracingstats
tracinglostchars
tracingonline
year
month
day
time
hour
minute
charcode
charext
charwd
charht
chardp
charic
designsize
pausing
showstopping
fontmaking
linejoin
linecap
miterlimit
warningcheck
boundarychar
prologues
truecorners
defaultcolormodel
mpprocset
troffmode
restoreclipcolor
numberprecision
hppp
vppp

And a few have the string type:

outputtemplate
outputfilename
outputformat
outputformatoptions
jobname
numbersystem

16 16

16 16

sparks, tags, suffixes and subscripts > taco hoekwater

17

It is not possible to change the type of these vari-
ables. If you try to do a type declaration anyway,
you will end up with a new user-defined variable
that happens to have the name of an internal
quantity but is in fact not related to it at all.

From then on, the internal quantity has become
inaccessible from within your code, even though
the variable itself still exists. In situations where
MetaPost needs to use that internal variable, it
will use the value it held before you made it inac-
cessible.

There is a command to make new internal quan-
tities: newinternal. Its usefulness is limited
since proper variables can do a number of things
that internal quantities cannot, but access to in-
ternal quantities is a little bit faster than normal
variables, and that is even true for user-defined
ones. On the other hand internal quantities can
only receive known values. It can be quite useful
to define new internal quantities for numerical
constants.

For example, plain.mp defines eps as:

newinternal eps;
eps := .00049;

For the internal MetaPost parser, these internal
quantity names pose a bit of a problem. Be-
cause they are variables, they are actually tags.
However, internal quantities cannot be suffixed
or subscripted. This means the definition of a
variable as given earlier on is not quite correct. To
be precise, a variable is either a single tag match-
ing one of the currently known internal quantities,
or it is the construct with a tag optionally followed
by suffixes as explained earlier.

6. Save and interim
The save command functions in a very straight-
forward way: it processes a list of symbolic to-
kens (either sparks or tags), saves the current
meaning or value in a safe place, and then con-
verts the symbolic token into an undefined tag.

It also makes every sub-variable that starts with
that specific symbolic token be undefined. The
save command operates on individual symbolic
tokens, so it cannot be used to save just some
sub-part of a segmented variable. It does not
wipe-out and replace the previous variable as a
new declaration would but instead, it makes the
tag available locally.

The normal use for save is within a group starting
with begingroup and ending with endgroup, like
within beginfig …endfig.

The traditional beginfig macro contains the
equivalent of

save x,y;

to make sure that any values of type x[] and y[]
outside of the current figure do not have any un-
due influence, while still saving them for potential
later use.

If you use save twice within a single group, it
will actually do the saving and undefining two
times. However, since both are unwound at the
endgroup, whatever you saved first will always
win out once you are outside of the group again.

For internal quantities, using save would not
work, because the symbolic token becomes un-
defined and therefore unassignable. That is why
there is a separate command for temporarily al-
tering and internal quantity. The argument to
interim looks like a normal assignment. The only
difference is that the previous value is restored at
the end of the group.

interim warningcheck := 0;

As with save, repeated calls do perform extra
saves, but at the endgroup they are all unwound
in save order, so the first saved value wins.

7. Let and def
A quick note on let and def for those of you that
are familiar with their counterparts in TEX: while
the principles are roughly equivalent in both lan-

17 17

17 17

contextgroup > context meeting 2019

18

guages, there are some important differences.
MetaPost does not have user-controlled macro
expansion, and it handles grouping in a com-
pletely different way, so the typical prefixes like
\global and \expanded of TEX do not exist.

The let command makes one symbolic token be
an alias for another symbolic token. It is typically
used just before redefining a spark, but it can
also be used to get more readable input. For
example:

let graycolor = numeric ;

will improve readability of the input if you rou-
tinely want to defined specific greyscale colors.
It is important to realise that graycolor is now a
spark, because numeric is a spark.

The downside to let is that it only works (quite as
you would expect) on sparks. The exact details
are as follows:

• If the token on the left-hand side is a tag
that starts a user-defined variable, then all
variables that start with that tag become
undefined (so besides redefining the token
itself, it also destroys the whole variable
structure);

• if the token on the right-hand side is a tag
that starts a user-defined variable, then the
left-hand side becomes undefined but the
variable(s) on the right-hand side are left as-
is;

• and if the token on the right-hand side is one
of a set of currently defined delimiters, then
the let will silently produce a bad delimiter
definition (for matching delimiters there is a
separate delimiters command).

But the exact details are not so important. The
important thing to remember is that the let com-
mand is meant to provide aliases for sparks and
cannot really be used for anything else other than
that.

The def command is much more flexible. How-
ever, if you want to actually redefine a spark using
def but still need the original meaning available

somehow, then you have no choice but to first use
let to store that original meaning in an alias.

As was implied earlier, def (and its cousins
primarydef, secondarydef, and tertiarydef)
produce sparks (since macro names are sparks
according to the tokenization rules). This means
that any name defined using a def command
can no longer be used as part of the name of
another variable. If that were allowed, it would be
expanded immediately to its replacement text,
and the macro’s replacement text would be used
instead of its name.

To elaborate, assuming there is a definition like

def up = (0,1) enddef;

then the variable name a.up would be impossi-
ble until that definition goes out of scope again,
because MetaPost would actually interpret a.up
as a (0,1); which then produces a syntax error
(unless a is actually a macro itself that requires
two delimited arguments).

Since this article is about variables and variable
names, I do not want to delve into the details of
the def command. But perhaps this would be a
good topic for another article.

8. Variable definitions
The restriction that def always produces a spark
is why there is a dedicated command for creating
macros that are actually tags. This command is
called vardef. In simple cases, the use of vardef
is very similar to using def.

def stuff =
fill unitsquare

enddef;

and

vardef stuff =
fill unitsquare

enddef;

appear equivalent when they are executed. But

18 18

18 18

sparks, tags, suffixes and subscripts > taco hoekwater

19

there is a difference in execution: the vardef
version actually expands into:

begingroup
fill unitsquare

endgroup

The extra grouping makes the macro expansion
syntactically equivalent to a variable when the
MetaPost needs to see an expression next. This is
important because it avoids confusing the Meta-
Post parser.

This works because grouping in MetaPost is a
bit unusual (yet another way in which MetaPost
is unusual!) in that the begingroup …endgroup
block is not only seen as a list of statements
grouped together. It can also be used as an ex-
pression. When viewed as an expression (which
is usually the case for vardefmacro expansions),
all the statements in the group are executed as
normal, but the last expression inside the group
(it could be empty) is taken as the value to use
for the expression outside of the group. It is pre-
cisely this oddity of grouping that makes vardef
definitions syntactically equivalent to variables.

Incidentally, it also makes grouping behave simi-
lar to an anonymous function call with one return
value.

The extra grouping usually will not matter, but it
means you cannot do things like

stuff withcolor green;

which makes sense once you realise that vardef
is supposed to equate to a variable. If we assume
for a moment that there was instead a normal
path variable named stuff, then the call would
look like this:

fill stuff withcolor green;

and indeed, after adjusting the vardef to

vardef stuff =
unitsquare % earlier 'fill' deleted

enddef;

it works just fine.

In some cases, the implicit extra grouping is an
impediment, and it would be better to use def.
But sometimes that extra grouping level can be
a bonus: it allows trivial macro definitions that
need grouping to be a bit shorter. Still, this is
only a very minor advantage, and the MetaPost
manual explicitly warns against abusing vardef
just for grouping.

So why is vardef useful?

First, because vardef defines a new tag instead
of a spark, the symbolic token itself can still be
used in the middle of an unrelated compound
variable name. Occasionally, you may want to
define a macro with a name that would also make
sense as a suffix to another variable. The META

FONT book highlights the example of dir. The
variable macro dir is defined as a vardef pre-
cisely because doing it this way means it is still
legal to have a pair variable named p5dir.

Also, because vardef produces a tag, it can be
used to create variable ‘names’ that are actually
macros. This is not just the case in standalone sit-
uations like with dir. Macros that are vardef’ed
can also be used at the end of compound variable
names. For example, you could have:

rgbcolor p[]col;
vardef p[]dir=
(#@dx,#@dy)

enddef;
p5col = red;
p5dir = up;

and that vardef definition would not interfere
with the rgbcolor declaration (see below for the
usage of the special #@ token).

There is a more specialized use of vardef as well.
The heading of a vardef allows a special syntax
that is a little more elaborate than a normal def.
This is easiest to explain with an example from
plain.mp:

19 19

19 19

contextgroup > context meeting 2019

20

vardef z@#=
(x@#,y@#)

enddef;

This defines the variable macro z. What makes
this definition heading of z special is that the
definition now has a built-in parameter of type
suffix that is named @# (remember that @# is
a single token, as explained in the tokenization
rules at the start of this article). The use of @#
in the definition heading triggers this behaviour.
You can always ask for @# in the replacement
body, but if @# was not also used in the heading,
@# would always be empty.

There is a subtle difference between this defini-
tion of z and the more naïve version:

vardef z suffix v =
(x.v,y.v)

enddef;

The special token @# only applies to a subsequent
suffix; the suffix that becomes the argument may
not be enclosed in parentheses (unlike in the sec-
ond definition, where parentheses when calling
are optional). Getting into the details of these
definition headings is quite far outside of the
scope of this article but for advanced usage with
multiple arguments to the vardef, the main ad-
vantage of @# is that when the vardef is called, it
allows for an undelimited suffix that is processed
before any other arguments are considered. With
‘normal’ definition headings, this is impossible to
do.

I had an example of usage here in an earlier draft,
but that created more confusion than it solved
because definition headings needed explaining in
detail. Just remember that the special token @#
in a vardef definition heading makes it especially
useful for manipulating sub-variables (like the
actual z definition from plain.mp does).

Finally every vardef, with or without the special
@#, also has two other special implicit arguments
that can be used anywhere in the replacement
text. The special argument name @ returns the

last part of the name of the defined macro, and
the special argument name #@ returns the com-
plement: all the parts before the last one.

When is this useful? Look at this:

vardef p[]dir=
(#@dx,#@dy)

enddef;

After this definition, p5dir expands into:

(p5dx,p5dy)

allowing you to write, for example:

p5dir = up;

to define the dx and dy subvariables, and query
those values by

if p5dir = up: fi

which looks and feels a lot nicer than having to
manipulate the dx and dy variables ‘manually’
like so:

(p5dx,p5dy) = (0,1);

In definitions like p[]dir, the special token @
which expands into the macro ‘name’ is not very
useful (we already know that it is dir), but keep in
mind that subscripts can also be vardef macros
themselves. Since @ expands into the actual sub-
script in that case, it can then be used to differen-
tiate between macro calls for specific subscripts
by using a numerical comparison, like this:

vardef a[] =
if odd @: message("odd")
else: message("even")
fi

enddef;
a1; % prints "odd"
a20; % prints "even"
end.

In cases where one of the special tokens is not
guaranteed to be a subscript, to test its value you
could use the str command instead (this makes
most sense with implicit suffixes):

20 20

20 20

sparks, tags, suffixes and subscripts > taco hoekwater

21

vardef a@# =
if str @# = "o": message("odd")
else: message("even")
fi

enddef;
a.o; % prints "odd"
a.e; % prints "even"

A warning about using vardef: because vardef
is a macro, it only works as the last part in a
complete variable name. After the p[]dir defini-
tion above, you can not now add another suffix to
create a new variable name:

pair p[]dir.target; % WRONG!

This is disallowed, because that set of variables
would actually be inaccessible.

Because of how the MetaPost parser works, the
target part of this name would need to become
a suffix argument to the p[]dir macro for the
syntax to be correct. But in this case, as the
macro is defined without a suffix argument, it is
never picked up, and the result is a syntax error:

! Isolated expression.
<to be read again>

target

If you really want to write things like
p5dir.target in the input, you could extend
the definition of p[]dir to also accept the
undelimited suffix @#, and then process the
target within the macro expansion but note that
p5dir.target would then not a variable name.
The variable name is p5dir, with the special
type vardef, and it receives the argument suffix
target.

9. Acknowledgements
The author of this article had been the Meta-
Post maintainer for quite a while and even ported
the MetaPost source code from the PascalWEB
source to CWEB. Even so, this text could not have
been written as quickly and thoroughly without
the invaluable aid of the two main sources ex-
plaining the language: the METAFONT book by
D. E. Knuth, and MetaPost – a user’s manual by
John D. Hobby, the creator of MetaPost. If you
want to become more fluent in MetaPost, then of
those two in particular the METAFONT book is a
must-read. While MetaPost extends the META

FONT language in some areas (like the addition of
color) and removes some other areas (especially
the underlying bitmap model), the core principles
of the language as well as its syntax rules have
remained essentially the same as in METAFONT.

Special thanks also go to my proofreaders Alan
Braslau, Hans Hagen and Gerben Wierda. Their
proposed improvements have resulted in a much
better article than I would have been able to
create on my own.

21 21

21 21

