
using texlua for track plan graphics > taco hoekwater

19

Using TEXLua for track plan graphics
Taco Hoekwater

TEXLua, combined with some of the Lua library files from ConTEXt, can
easily be used to do parsing of almost any file format. I plan on using
that approach to generate graphics frommymodel railroad track plan
that is itself designed in XtrackCAD. The lpeg library and some helpers
are used to parse the file format and generate MetaPost source that
will be converted into png images.

Introduction
For much of my twenties and thirties, I spent way over half of each calendar day
behind a computer screen. Almost fifty now, I am finally loosing interest a little, and
I went back to a hobby from my teens: model trains.

Strangely enough, there is a lot of staring at computer screens involved with this re-
discovered hobby. In the last thirty years, computers have become quite integrated
with model railroading: there are programs to help design your layout, programs to
control turnouts, programs that actually drive the train engines, programs tomonitor
where those trains are on the layout, and then of course there are programs to
actually control those programs.

So now I can have the best of both worlds: playing with all these programs is a lot
of fun, however when (occasionally) that gets boring, I can go off and actually play
with toy trains!

Since I am starting from scratch (none of my old stuff was even rescuable after
being taken through half a dozen moves, stored in crappy boxes on leaky attics, and
generally having been neglected for three decades) the first task was to come up
with a track plan. The program I use for that is called XtrackCAD, and I am really
happy with it. Not that I had too much choice, working primarily on a Mac does limit
the options quite a bit.

Still, XtrackCAD has a number of advantages over the mostly commercial Windows
software options:

• It is open source software (mercurial on sourceforge), with prebuilt distribu-
tions for Windows, Mac, and Linux, with an active development team.

• It supports lots of track manufacturers with a database of measured parts
(including mine!) and adding new part definitions is possible.

• It can work on multiple layers.
• It allows the addition of meta-information like block and turnout identifiers.
• It can create printouts in any scale, including at full size.

19 19

19 19

contextgroup > context meeting 2018

20

• It is a CAD-style program, so measurements can be exact.
• Its save files are ascii-based, meaning post-processing is easy.

Of course there aremanyother thingsworthmentioningwhen comparingXtrackCAD
to other programs, but that is the list of features that I need the most. If you are
interested yourself, have a look at http://www.xtrkcad.org. Below is a screenshot of
the bottom layer of my current track plan in figure 1.

Figure 1. XtrackCAD in action

Even with all those features, there are a few things I wish it could do that it cannot.
Most importantly, I want to document what I set up for the computer controls of the
layout. For example, groups of track segments are combined into logical blocks for
the computer control software to run trains.

This is separate from and not indicated by the colors on the screen, those colors are
just visual aids for me while editing. The brown color is the ‘main line’, The blue

20 20

20 20

using texlua for track plan graphics > taco hoekwater

21

parts are staging and storage tracks, the green bits are the start of the helixes that
go to the upper level.

On the partial layout you see in the screenshot, there are actually about 20 logical
blocks, with most of those themselves divided into three sub-blocks. It is possible
to enter that logical block information using a popup dialog in XtrackCAD, but there
is no way to create a nice visual overview. I could technically put each in a separate
layer with a slightly different color, but with so many colors that would quickly
become confusing. Besides, that would still not display the logical name of the
block, nor the identifiers of the sensors attached to it.

Alternatively, I could produce a multi-page printout and then do the labelling
manually. Or export a PDF and add notes on that. But the downside of those is that
when something changes on the layout, it is going to be hard to keep the manual
documentation up-to-date. And with this being version 185, future changes seem
highly likely.

Other options: I could nag the developers to create a nicer interface. Or I could jump
in myself and start programming on XtrackCAD myself. That latter option would
take quite a bit of studying though, and with the former option the final result would
perhaps not be exactly what I want.

Besides, I askedmyself: will the output ever be as good looking as I am sure it could
become using LuaTEX and MetaPost? Surely not!

So, I went off to investigate the XtrackCAD save file format in detail. It looked rather
doable towrite an lpegpatternmatcher to convert its content to a Lua table. That can
then be used to generate niceMetaPost graphicswith nicely typeset LuaTEX captions
for the label information.

At this point in time, I have not gotten very far. That is: the file format parser is
complete and it can roundtrip the input so I can verify it is fine. And there are some
rudiments of a MetaPost output stage. That’s about it. Life got in the way, but at
least now I am certain I will have something to talk about at next year’s meeting.

XtrackCAD File format
Like I wrote earlier, the file format is text based. The general structure is that an
uppercase word at the start of a line starts a record. Some records are a single
line, other records are multi-line. In either case, the first line is a command word,
followed by any arguments. In themulti-line record format, all subsequent lines are
indented. Each of those lines is also a single command (of a type that only happens
within record content), and the record ends with the command END. Lines that start
with a hash mark are comments, and empty lines between records are ignored.

Here is the start of the file, containing some global information fields:

#XTrackCAD Version: 5.1.0, Date: Sat Jun 2 11:57:26 2018
VERSION 10 3.0.0

21 21

21 21

contextgroup > context meeting 2018

22

TITLE1 MGB
TITLE2 Bovenkamer
MAPSCALE 64
ROOMSIZE 245.669291 x 239.763780
SCALE HO

There are two versions here. The Version is the program version, the VERSION is the
save file version. The Date is the timestamp of the save file. MAPSCALE is the scale
for the popup navigation map. ROOMSIZE is interesting only because it is in inches: in
fact all dimensions in the save file are in inches, even though the interface can be
set to metric.

Next come the layer definitions:

LAYERS 0 1 0 1 255 0 0 0 0 "top tables"
LAYERS 1 0 0 1 128 0 0 0 0 "ns"
LAYERS 2 0 0 1 32768 0 0 0 0 "sgb"
LAYERS 3 0 0 1 14941952 0 0 0 0 "detection top"
LAYERS 4 0 0 1 65280 0 0 0 0 "helix1"
LAYERS 5 1 0 1 366623 0 0 0 0 "helix2"
LAYERS 6 1 0 1 8388608 0 0 0 0 "bottom"
LAYERS 7 0 0 1 8388736 0 0 0 0 "detection bottom"
LAYERS 8 0 0 1 8421376 0 0 0 0 "helix3"
LAYERS 9 1 0 1 16711935 0 0 0 0 "staging2"
LAYERS 10 1 0 1 255 0 0 0 0 "staging"
LAYERS 11 0 0 1 128 0 0 0 0 "bottom tables"
LAYERS 12 0 0 1 32768 0 0 0 0 "staging3"
LAYERS 13 0 0 1 16776960 0 0 0 0 ""
LAYERS 14 0 0 1 65280 0 0 0 0 ""
LAYERS CURRENT 0

Whatmakes this interesting is that it highlights a problem of nearly all free software:
the documentation does not quite match up with reality. In the case of XtrackCAD,
there is a wiki page to document the file format. Here is what it has to say about the
LAYERS command:

LAYERS<sp>Layer-num<sp>visible<sp>0<sp>unlocked<sp>"Layer-Name"

Note - This is repeated for each defined layer

That would mean the save file should look like this according to the documentation:

LAYERS 0 1 0 1 "top tables"

But there are five extra arguments. So what are those? Snooping through the C
source files reveals that the first of those is the layer color. The wiki explains that all
colors are coded as (Red*65536+Green*256+Blue). So, layer 0 is 100% blue. The
other four values are hardcoded zeroes, probably for a planned extension.

22 22

22 22

using texlua for track plan graphics > taco hoekwater

23

Inmyparser, I havenot alwaysbeen sodiligent looking through theC source. Mostly,
I combinedwhat I sawon the screenwithwhat I read on thewiki, and if that seemed
to match up to command arguments, I just went with it and ignored any extra or
missing arguments compared to the wiki specification.

After the layer definitions, the actual layout objects start. The order in which the
commands are listed in the save file seems based on creation order, but that is not
too important. What is relevant is that all the layout objects have an index number,
and these are numbered consecutively.

Let’s look at the first one inmy file to illustrate some other points (by the way, notice
that layer indices start at zero but object indices at one?)

DRAW 1 0 0 0 0 71.336544 -27.078188 0 336.079608
F4 0 0.000000 4 0

166.043307 107.972441 0
222.736220 107.972441 0
222.736220 99.212598 0
166.043307 99.212598 0

END

Here is what the wiki says:

DRAW<sp>index<sp>layer<sp>0<sp>0<sp>0<sp>start-x<sp>start-y<sp>angle
A set of line segments
END

Parsing this (and with a bit of correction), we should get:

argument value
index 1
layer 0
start-x 71.336544 (181.19cm right from the bottom left of the room)
start-y -27.078188 (68.78cm below the bottom left of the room)
angle 336.079608 (0 degrees is ‘up’, and direction is clockwise, so a little

after eleven o’clock)
segments F4

That extra zero between start-x and angle is ignored in the current XtrackCAD, and
probably intended for a future 3D extension.

The F4 command indicates a filled polygon. The header line says that the color is 0
(black), the linewidth is 0.000000, the number of defined points is 4, and the subtype
is 0 (which stands for ‘freeform’).

Then the four points are defined. The third value is always zero right now,
and is again intended for a future extension for elevation. The four points de-
scribe a rectangular box, which is then rotated 336.079608 degrees around the

23 23

23 23

contextgroup > context meeting 2018

24

(71.336544,−27.078188) point. Sounds a little odd? I thought so too, so I decided
to check manually.

Ignoring the imperial to metric conversion, the MetaPost input would look like this
(with the angle negated because XtrackCAD and MetaPost do not agree about clock
direction):

p := (166.043307,107.972441)--
(222.736220,107.972441)--
(222.736220,99.212598)--
(166.043307,99.212598)--cycle;

fill p rotatedaround((71.336544,-27.078188), -336.079608);

And indeed this reproduces what I see on my XtrackCAD screen. Why the polygon
is so oddly defined as rotating around a point that is literally meters away, I have no
idea… perhaps it is a side-effect of how I created or rotated the polygon in the GUI?

One last note to make about the F4 command: this is actually called an F command
with internal version 4. This is how save format updates are handled. In the F3
version, there was no subtype, and in the original F version there were no elevations
in the point definition either.

The other commands in the save file follow the same pattern. Some commands are
simpler, others are more complex. Two quick examples with going into the specific
details of the arguments will end this section. First, this example is of a simple
straight bit of track:

STRAIGHT 11 1 0 0 0 HO 2
T4 12 165.221427 72.459726 141.000000 0 0.0 0.0 0.0 0.0 0 0 0 0.000000
T4 16 162.155016 76.246429 321.000000 0 0.0 0.0 0.0 0.0 0 0 0 0.000000
END

This says that this bit of track is connected to the object with index 12 at point
(165.221427 72.459726) an angle 141 degrees, and also to the object with index
16 at (162.155016, 76.246429) on the opposite side (321 minus 141 equals 180,
as it should be for a straight bit of track).

Worth noting is that the main object of the record does not have a direction angle.
Instead, the angles of the connecting tracks are specified. This is true for all records
that list track connections.

Second, here is the record that defines a turnout:

TURNOUT 6 1 0 0 0 HO 2 156.870079 237.051181 0 0.000000 "Peco RH Medium Turnout,
Electrofrog SL-E195"

T4 393 156.870079 237.051181 270.000000 0 0.0 0.0 0.0 0.0 0 0 0 0.000000
T4 17 165.492126 237.051181 90.000000 0 0.0 0.0 0.0 0.0 0 0 0 0.000000
T4 5 165.492126 236.051181 102.000000 0 0.0 0.0 0.0 0.0 0 0 0 0.000000
D 0.000000 0.000000

24 24

24 24

using texlua for track plan graphics > taco hoekwater

25

P "Normal" 1 2
P "Reverse" 1 3 4
S 0 0.000000 0.000000 0.000000 0.648600 0.000000
S 0 0.000000 0.648600 0.000000 8.622047 0.000000
C 0 0.000000 31.101230 0.648476 -31.101230 0.000076 12.000152
S 0 0.000000 7.114985 -0.679653 8.622047 -1.000000
END

A quick legend will help understand this better:

T Stands for ‘Track connection’
D Offset for the description label in the UI
P Paths a train can take. The numbers reference the next four lines and indicate

the internal routing
S Straight internal section of the turnout (these use a local coordinate system)
C Curved internal section of the turnout

A MTXRUN script
At this stage, I do not really need a command line interface, because there is
very little functionality. The only actions I can perform are (attempt to) parse
an XtrackCAD file, attempt to regenerate the file from the parse tree, and output
rudimentary MetaPost code for testing the interpretation of the parse tree.

But I envisage lots of functionality appearing in the future, so it makes sense to
create an mtxrun script right away. As a bonus, this allows the various .lua code
files to live in my context tree instead of in a local or hardcoded directory.

xtrkcad | XtrackCAD file support
xtrkcad |
xtrkcad | --xtc output a new xtc file (--output)
xtrkcad | --metapost output metapost input (--output)
xtrkcad | --output=file write to file instead of stdout
xtrkcad | --test test the xtc parsing by roundtripping
xtrkcad |
xtrkcad |
xtrkcad | Examples
xtrkcad |
xtrkcad | mtxrun --script xtrkcad --test file.xtc
xtrkcad | mtxrun --script xtrkcad --metapost --output=file.mp file.xtc

With the mtx-xtrkcad.lua, xtc-parser.lua and xtc-metapost.lua stored in the
folder texmf-project/scripts/context/lua/third/xtrkcad.

The --test option only returns a message indicating ‘ok’ versus ‘not ok’, without
line numbers. I find getting lpeg to report problems in a usable format quite hard
and am still looking for a way to generate nice error messages. For now, the way
to check where the script goes wrong is by making it create new .xtc file, and then
running the diff command manually.

25 25

25 25

contextgroup > context meeting 2018

26

The LPEG parser
From the lpeg website at http://www.inf.puc-rio.br/~roberto/lpeg/ comes this quick
definition:

‘lpeg is a new pattern-matching library for Lua, based on Parsing Expression
Grammars (PEGs).’

It is one of these sentences where you either have an ‘oh, really?’ moment or an
‘ah, right!’ moment depending on whether you already know what a PEG actually is.
The important word is ‘Grammar’: lpeg works on the assumption that whatever you
are trying to parse makes sense grammatically, for some to-be-defined grammar.
Creating a lpeg parser means building up a specialized grammar that can interpret
your input. lpeg offers a mix of overloaded Lua operators and special functions that
allow you to break up the input into grammatically sensible parts (that you can then
do whatever you want with).

There are quite a number of functions and operators defined by the lpeg module.
Some are really basic, others are quite specialized. To keep my parser simple, I
have used the simplest lpeg features that I could. This is mostly future-proofing
myself: my memory is not the best, so the simpler the code, the less I will have to
relearn when I inevitably will need to update the parser a few years from now.

Here are all the functional parts of lpeg that I am actually using:

Operator Description
lpeg.P(n) Matches exactly n characters
lpeg.P(string) Matches string literally
lpeg.S(string) Matches any character in string (Set)
lpeg.R("xy") Matches any character between x and y (Range)
patt^n Matches at least n repetitions of patt
patt^-n Matches at most n repetitions of patt
patt1 * patt2 Matches patt1 followed by patt2
patt1 + patt2 Matches patt1 or patt2 (ordered choice)
patt1 - patt2 Matches patt1 if patt2 does not match
-patt Equivalent to ("" - patt)
lpeg.match(patt,input) match a pattern against some input
lpeg.C(patt) the match for patt plus all captures made by patt
lpeg.Ct(patt) a table with all captures from patt
patt / function the returns of function applied to the captures of patt

I will introduce these commands better where they are used.

The lpeg parser module starts with a bunch of local definitions, as is typical of Lua
code inside ConTEXt:

local match = lpeg.match
local P = lpeg.P

26 26

26 26

using texlua for track plan graphics > taco hoekwater

27

local S = lpeg.S
local R = lpeg.R
local C = lpeg.C
local Ct = lpeg.Ct

Following that, there are some basic definitions of parser units. When writing a
parser, I find it works best to work from both ends: from the bottom up to find the
smallest objects that still make sense as a parsed unit (strings, numbers, etc.) as
well as from the top down to find the global structure of the input in terms of records.

There are two tiny helper functions that make it easier for me to remember the lpeg
syntax:

local function maybe(p) return p^-1 end
local function without(p) return (P(1)-p) end

The p^-1 syntax means: match at most one occurrence of the pattern p. But I find
that not very readable, so I use maybe(p). A similar situation exists for P(1)-p:
P(1) just means: match any character. The minus operator modifies that so that
the expression becomes: match any character that does not include whatever the
pattern p is.

Next are some actual lpeg definitions:

local space = S(" \t")^1
local emptyline = P("\n") * maybe(space)
local nl = P("\n") * maybe(space)
local quote = P('"')
local dot = P(".")
local digits = R("09")^1
local endfile = P("END")
local endcontent = P("\tEND")

So a space is either a space or a tab character. The emptyline and nl consist of
a line feed followed by an optional space. These two are different names for the
same content, just to make the rest of the parser easier to read. quote is used to
find strings; dot and digits for floating point numbers.

The endfile and endcontent are used for discovering the end of the input and the
end of the current record.

The basic building blocks of .xtc files are integers, floats and strings:

local integer = C(digits)
local float = C(maybe(P("-")) * digits * maybe(dot*digits))
local string = quote * C(without(quote)^0) * quote

27 27

27 27

contextgroup > context meeting 2018

28

This is the point where the lpeg.C() function becomes useful, as whenever we find
an integer, float, or string, we want to capture them for further processing.

This is also the point where intimate knowledge of the file format comes in handy:
I am certain, for example, that floating numbers without leading zero (like e.g. .01)
never happen, nor do floats in scientific notation (like e.g. 1E-2). If that was not the
case, then the definition of float would have to be a bit more complex. Similarly, I
know that I never use "withinmy labels in XtrackCAD. And since they cannot happen
in the input, I do not have to worry about string quoting issues either.

After this, it starts to get a bit more functional:

local rest = without(nl)^0
local content = C(without(endcontent)^0)
local scale = C(P("HO") + P("N"))
local version = C(digits * dot * digits * dot * digits)

The rest is an easy way to grab the rest of a line. The content is a way to capture
all of the content of a complex command. scale and version are low-level parser
objects. Both of these will be used to scan the initial portion of the .xtc save file.

But before we get there, I have another block of convenience definitions

local function Sp(a)
if a then return a * space else return space end

end
local oneF = float
local twoF = Sp(oneF) * oneF
local threeF = Sp(twoF) * oneF
local fourF = Sp(twoF) * twoF
local oneI = integer
local twoI = Sp(oneI) * oneI
local threeI = Sp(twoI) * oneI
local fourI = Sp(twoI) * twoI

These have no other function than to save typing and thus make the rest of the lpeg
parser more readable. One other line of lua code worth mentioning now is this one:

xtc = {}

The variable xtc is a table that will hold all of our interpreting functions. In the code
we will say for example:

C(rest / xtc.do_comment)

and this will pass the rest as argument to the function xtc.do_comment. The
function itself is boring, it just saves the comment to the layout. Another case

28 28

28 28

using texlua for track plan graphics > taco hoekwater

29

of ‘know your input’ happens here, because I know there is always only a single
comment line in the input, so a single variable in the parsed data structure is enough.

local layout = {}
xtc.do_comment = function (a)

layout.comment = a
end

The ‘command record’ parser grammar lines for the initial portion of the saved file
look like this:

local xtc_comment = P('#') * (rest/xtc.do_comment) * nl
local xtc_version = P('VERSION') * space

* (Sp(oneI) * version / xtc.do_version) * nl
local xtc_title1 = P('TITLE1') * space

* (rest/xtc.do_title1) * nl
local xtc_title2 = P('TITLE2') * space

* (rest/xtc.do_title2) * nl
local xtc_mapscale = P('MAPSCALE') * space

* (oneI/xtc.do_mapscale) * nl
local xtc_roomsize = P('ROOMSIZE') * space

* (Sp(oneF) * Sp(P('x')) * oneF
/ xtc.do_roomsize) * nl

local xtc_scale = P('SCALE') * space
* (scale/xtc.do_scale) * nl

A few notes on that. First, I could have written the second line like this as well:

local xtc_version = 'VERSION '
* (integer * ' ' * version / xtc.do_version) * '\n'

Because whenever the lpeg operators encounter a bare string or number, they will
assume you actually meant to add a P() around that bare string or number. Some-
times this makes your grammar easier to read. But like all automatic conversions, it
can also become confusing in odd cases. For example, this would not work unless
extra braces are added around the string concatenation:

local xtc_version = 'VERSION' .. ' '
* (integer * ' ' * version / xtc.do_version) * '\n'

So I find it better to always wrap all strings and numbers in P(), just in case.

You can see from the actual code that I prefer to use actual lpeg definitions for
everything expect keywords. This makes it easier to change something if (or rather
when) the file format changes in the future. Currently, the .xtc format is very clear

29 29

29 29

contextgroup > context meeting 2018

30

about when it uses spaces versus tabs. But with active development being done to
the program, that is one of those things that can quickly change on the whim of a
XtrackCAD developer.

Final note on this part: the location of the / xtc.doversionmatters! When you add
a function following a / operator, it will receive all thematches in the (sub)pattern, in
theorder inwhich theywere found. What Iwant is fordo_version to get theinteger
as its first argument, and the version as its second argument. Both of those have
their own embedded C() and these are the two in this sub-pattern, so for my actual
input it works out fine either way.

But imagine for a moment that there is a third C around these twomatches, so if the
input looked like the following example:

... C(Sp(oneI) * version) / xtc.do_version * nl

In that case, the function would receive three arguments. Argument one would be
the input segment containing both of the matches I actually want, and arguments
two and three would be those matches separately.

Similarly, if there was another match happening earlier in the line, like this:

local xtc_version = C('VERSION') * space
* (Sp(oneI) * version) / xtc.do_version * nl

the first argument would be the VERSION match, and arguments two and three the
ones I actually want.

Notice that the set of () does not actually affect the number of matches, the sole
point of that extra set of () is to limit the scope of the / operator. Any matches
outside of the enclosing () pair will not be fed into do_version. In this case that
is not relevant at all, but it can make quite a difference in more complicated (sub-)
patterns.

Let’s look at a somewhat more complicated case, like DRAW:

local xtc_head = Sp(oneI) * Sp(oneI) * Sp(oneI) * Sp(oneI) * oneI

local xtc_draw = P('DRAW') * space * (Sp(xtc_head) * Sp(twoF)
* Sp(oneI) * oneF * nl * content / xtc.do_draw)
* endcontent * nl

The do_draw function will get a much longer list of arguments. Its definition looks
like this:

xtc.do_draw = function (index,layer,a,b,c,startx,starty,d,
startangle,content)

local t = {

30 30

30 30

using texlua for track plan graphics > taco hoekwater

31

index = tonumber(index),
type = "draw",
layer = tonumber(layer),
startx = startx,
starty = starty,
angle = startangle }

handle_content(t,content)
layout.track[tonumber(index)] = t
layout.lasttrack = tonumber(index)

end

The arguments a, b, c and d are the hardcoded zeroes explained earlier. They are
parsed since you cannot ignore them without extra work, but they are not stored.
Worth noting:

1. All pattern matches are always strings. If you need numbers, you have to
convert them yourself.

2. The results are stored in the layout data structure as a type of track. That
may seem odd, but since index values are shared between track items
and drawing objects like this, it makes sense to keep them together so that
when it comes time to do processing of the data, ipairs() will work.

3. Handling of the actual drawing commands is delegated to a separate func-
tion handle_content.

The handle_content function is in fact an ‘embedded’ lpeg itself. It turns out
that for this input, that is the simplest way of handling it. The overall structure of
handle_content looks like this:

function handle_content (resulttable, icontent)
local function do_T (...) parse_T (resulttable, ...) end
local function do_T3 (...) parse_T3(resulttable, ...) end
-- [omissions here]

local xtc_T3 = P("T ") * (Sp(oneI) * Sp(threeF) * Sp(oneI)
* Sp(twoF) * oneF/do_T3) * nl

local xtc_T = P("T ") * (Sp(oneI) * Sp(twoF) * oneF/do_T)
* nl

-- [more omissions here]
local xtc_content = (xtc_SB + xtc_SE + xtc_T4 + xtc_T3 + xtc_T

+ xtc_E4 + xtc_E + xtc_F4 + xtc_F3
+ xtc_Q3 + xtc_G3 + xtc_L3 + xtc_W3
+ xtc_D + xtc_S + xtc_C + xtc_P + xtc_B3
+ xtc_Z)^1

xtc_content:match(icontent)
end

31 31

31 31

contextgroup > context meeting 2018

32

The new lpeg thing worth mentioning is that pattern matching is always greedy. In
this case, that means that xtc_T3 needs to appear in the xtc_content line before
the xtc_T: match specifications that require a longer prefix need to always come
before less precise specifications.

We have covered almost all the interesting bits of the .xtc parser already. The rest
is just setting up the lpeg parser variable, and loading and parsing an actual file:

local xtc_statement = xtc_version + xtc_title1 + xtc_title2
+ xtc_mapscale + xtc_roomsize + xtc_joint
+ xtc_block + xtc_switchmotor + xtc_signal
+ xtc_control + xtc_sensor + xtc_scale
+ xtc_layers + xtc_layers_c + xtc_draw
+ xtc_curve + xtc_cornu + xtc_turntable
+ xtc_turnout + xtc_straight + xtc_car

local xtc_file = (xtc_statement + xtc_comment + emptyline
+ endfile + xtc_rubbish)^1

xtc.parse = function (v)
local data = io.loaddata(v)
if data then

layout = xtc.new_layout()
xtc_file:match(data)
if xtc.error then

return nil, xtc.error
end
return layout

end
return nil, 'file not loadable'

end

The last bit worth mentioning is the definition of xtc_rubbish and its matching
function:

local xtc_rubbish = (P(1)^1 * rest/xtc.rubbish)

xtc.rubbish = function (a)
if a and #a>0 then

local v = string.split(a, '\n')
xtc.error = xtc.error or ''
xtc.error = xtc.error .. 'found: [' .. v[1] .. ']\n'

end
end

32 32

32 32

using texlua for track plan graphics > taco hoekwater

33

This matches anything that was not explicitly mentioned previously and raises an
error. While building up the parser and also to prepare for future file format changes,
a function like that is a vital tool.

The MetaPost output
This will be the topic of one of next year’s talks.

33 33

33 33

