
contextgroup > context meeting 2017

98

The Project: MEO
Massimiliano Farinella

MEO stays for “Marx-Engels, Opere” (“Marx-Engels, Works”) and it’s the project, led by
the Istituto di studi sul capitalismo1 in collaboration with Edizioni Lotta Comunista2 to
complete, digitize and publish the works by Karl Marx and Friedrich Engels in Italian.
It’s a volunteering project working on texts coming from different sources. Why talking
about it here? Because ConTEXt is used to preview the texts and produce the PDFs to
be printed.

1. The Texts, the People and the Tools

It’s a huge material: 50 volumes of 600 and more
pages each, with hundreds of footnotes and end-
notes, a biographical index of names and bibli-
ographies.
It’s a varied material: texts, letters, articles, doc-
uments, manuscripts with many kinds of anno-
tations, tables, mathematical formulas (a dozen
volumes contain a significant amount of them),
two kinds of footnotes (the authors’ ones distinct
from the editorial ones), juvenile poems and even
sketches of theatre plots, quotes of text and po-
ems, even in footnotes, parallel texts, sketches by
the authors.
Also the sources are variable: more on this in the
section “The Sources”.
The main goal is to have them published as printed
volumes. A second goal is to have a database of
electronic texts that remain available and usable
in the long term.
There are many volunteers willing to help, but
nearly no one is trained to use a DTP software;
almost everyone knows one of the versions of Mi-
crosoft Word or, less frequently, Open/Libre Office.
Those were the boundary conditions when we
started developing a solution three years ago.
The solutions changed over time and are still
changing, to adapt to the challenges that such a
huge project poses.

1.1 MEOEDIT

We are using (and still developing) a soft-
ware — MEOEDIT — to store, edit and typeset the
texts.

It uses many open source softwares: Debian,
Ubuntu, Docker, ConTEXt, CKEditor, Node.js, Mysql,
PHP, Pandoc, Gitit.
It’s a web-based, rich text editor of (X)HTML texts,
stored in a Mysql database and converted to PDF
with ConTEXt. That is its current shape, but it has
not been that way from the start.
For example, before discovering ConTEXt — it hap-
pened by chance — we were experimenting with
PrinceXML3, an HTML/XML+CSS to PDF converter.

2. An XHTML to PDFWorkflow of Texts
Edited in a Browser

The format in which the texts are edited and stored
is (X)HTML, so the typesetting follows an XML to
PDF workflow.
(X)HTML was finally chosen to maintain, as much as
possible, a “structured text” approach, separating
structure from style and rendering.
Of course HTML is not the best choice for such an
approach.
XML is better, but you need to define a grammar
or choose an existing one like XML-TEI.
We wanted an easy, visual editor for users willing
to help but frightened by tags and angular paren-
theses. It is difficult to find free, good, visual XML
editors. XMLMind XML Editor4 is one of the best,
but it’s not free nor open source. It is much easier
to find HTML ones.
Finally we chose CKEditor: it’s visual but it has a
source code view that lets you inspect the “real”
text: tags, plain text and no hidden elements.

98 98

98 98

Digital edition of “Marx-Engels, Opere” > massimiliano farinella

99

Figure 1: A letter in the editor and styles in tag.class notation.

Another important feature of CKEditor is that it lets
you specify the tags allowed to mark your text;
unspecified tags are flattened to plain text; that’s
something similar to the DTD for XML documents.
That way your texts stay quite “clean” even when
you copy and paste from different sources.
So the trade-off is to use HTML as if it were XML:

• use existing, consistent HTML elements
where possible: <p> for paragraphs, <h1>
... <h6> for titles, and so on

• simulate missing elements with existing
HTML elements: i.e. <a> for footnote or
endnote markers

• use the class attribute to diversify the
standard HTML elements or simulate new
ones

• prohibit the style attribute: no anony-
mous, local specifications of styles; CKEdi-
tor’s controls to choose font, size and color
have been disabled and do not appear in
the toolbar

• style the editor with an external CSS to
make the structural elements look sim-
ilar to what you would expect: i.e. italic
for emphasis, bold for strong emphasis, an
icon of a person before a name to be in-
cluded in the biographical index, and so
on

• warn users that the editor is intended as
“What You See Is What You Mean” and not
WYSIWYG; train them to expect some quirks
from CKEditor, since this latter was not
conceived primarily for XML, and to call
for help from other users more comfort-
able with the source code view

• for developers, take advantage of jQuery
and Cheerio.js, its server side counterpart,
to work with text structures (easier than
XSLT)

There is nothing new here. Many ideas are bor-
rowed from other software and specifications, so
that a newbie with prior knowledge can read the
code without finding it so alien.

99 99

99 99

contextgroup > context meeting 2017

100

This grammar — specified through HTML elements
and custom classes — is still arbitrary and not
standard. But it is conceived to remain easily ed-
itable, understandable and convertible into other
formats (DOCX, EPUB, XML-TEI).

3. The Sources

For the most part the texts came as printed vol-
umes by the publisher Editori Riuniti, some others
were available as PDFs and others are under trans-
lation, since they are still unpublished in Italian.
Printed volumes have been scanned and passed
through OCR page by page, then uploaded as single
page files to the site meo-correzione.org5 — along
with the PDF image of the original volume — for a
distributed correction of OCR errors.
The downloaded, corrected texts were then con-
verted into HTML files and loaded into MEOEDIT.
Volumes available as PDFs were converted first to
DOCX, then to HTML with a custom converter based
on Pandoc, then loaded into the program. The
same goes for unpublished volumes, supplied as
DOCX files.
Once inside MEOEDIT, the texts were given a first
formatting and then converted to PDF for preview
(initially with PrinceXML, then with ConTEXt); then
they were read and checked against the original
sources — “validated” — by pairs of people. The
corrections were then reported in MEOEDIT.

4. Text Units

Since the editor lives in a web browser, you can’t
edit a whole volume at once, as you would do with
a word processor: the browser would get slow and
it’s difficult working on a text that is not WYSIWYG
nor organized in pages.
We overcame that problem by “slicing” every vol-
ume into atomical units of text, and then finding
a way to assemble them later. We named them
“Unità di testo” (UDT), which means “Text Units”:

• they consist in a number of original printed
pages ranging from one to some dozens;
in rare cases, there are 70 pages long Text
Units and they are the hardest to edit

Figure 2: The tree structure of a volume. Container UDTs are in
green or light blue

• they try to match the divisions of the origi-
nal book: a single letter, an article, a chap-
ter…

• in a minority of cases, the text has been
split at arbitrary points, just to avoid UDTs
of too many pages

4.1 Container Text Units

To assemble the Text Units (UDT) into volumes first
we thought of a master file, but then we decided
to reuse something we already had: Text Units.
Inside a Text Unit you can insert a reference to
another one: think of “includes” in source code
or xi:include for XML. They are coded as HTML
links, <a> elements with a particular class.
When the software assembling Text Units finds a
reference to another UDT, it replaces the reference
with the UDT contents (actually the HTML contents
of its <body> element). For example, this replace-
ment happens when a Text Unit is converted to PDF
by ConTEXt.
The Text Units containing references to other ones
are called “container Text Units” (“UDT conteni-
tore”) and they can be organized to form the tree
structure of a volume: a volume UDT, containing
references to the chapter UDTs, containing refer-
ences to smaller units.
The container Text Units are designed so that they
start at a new page and the next one begins at a
new page too.
This way you can get the ConTEXt preview of a
Text Unit — representing a part of a book — and
be sure that its typesetting won’t influence the

100 100

100 100

Digital edition of “Marx-Engels, Opere” > massimiliano farinella

101

text flow and page breaking of other sections. It’s
also faster than previewing a whole volume, after
a local change.

5. Docker

The software is installed on a server. At an earlier
stage it was a Debian installation with an Apache
server. In case of failure, we had to reinstall from
scratch and remember all the needed libraries. In
case of new software dependencies, we had to
make sure they did not conflict with existing ones.
Then we shaped MEOEDIT to work inside docker6

containers, and we solved these problems:

• the need for an easy way to install from
scratch, because of failure recovery or
simply to have a machine for MEOEDIT de-
velopment

• software libraries dependencies and con-
flicts: you can run different GNU/Linux dis-
tributions in distinct containers

• the possibility of building different services
with different tools and languages

MEOEDIT is modularized into 7 Docker containers:

• mysql server
• apache server + the site (PHP + CKEditor)
• a wiki
• a service based on Express.js7 that acts as

a proxy between the site and the mysql
database, aggregating data and returning
them as JSON objects

• a redis cache (a RAM-resident key-value
cache) used by the previous service, to
speed up the responses

• a service that accepts XHTML and typesets
it with ConTEXt, returning a PDF and some
progress information as well

• a service to export the texts into other for-
mats using Pandoc

Every container is built following a recipe written in
a Dockerfile, a text file describing the operations
needed to rebuild the (image of the) container.
This enforces discipline, because every time you
introduce a new dependency you need to specify
it in the Dockerfile, with its configuration. When

Figure 3: The container structure of MEOEDIT

the server must be replaced, you’ll have an auto-
matic recipe to build an identical one.
Every container is a sort of isolated machine, with
its own distribution of GNU/Linux, its versions of
libraries and so on. For example, the context
container is built on a Debian Jessie distribution,
with the latest version of ConTEXt and the version
of Node.js coming from its site instead of the older
one from the official Debian repository; the wiki is
built on Ubuntu Xenial and has gitit8 installed.
The containers are configured and managed with
Docker Compose9, which takes the configuration
from a single text file — docker-compose.yml—
and pulls up the containers; if the container images
do not exist yet — think of a new installation —
the config file contains information for docker-
compose to build them.

6. meo-context, the Container
Containing ConTEXt

ConTEXt is run inside its own container, whose
name is meo-context. In earlier versions of MEO-
EDIT, it ran on the same machine of the web server
and was called by PHP code running inside Apache.
If anything went wrong, the server could be
blocked too. Now it is only meo-context that
goes down, leaving the web server untouched.
You loose the PDF preview until meo-context gets
restarted or rebuilt, but you can continue editing
the texts.

101 101

101 101

contextgroup > context meeting 2017

102

7. Further Developments
7.1 XHTML and ConTEXt

The MEO workflow is XML to PDF, where the XHTML
should only contain information about the struc-
ture of the documents.
But there’s no completely automated typesetting,
and you always need to do manual adjustments.
They are easier and more natural in ConTEXt doc-
uments, but how to do them when your sources
are XHTML? How to code them inside XHTML? How
to inject ConTEXt macros inside XHTML? How to
clean up your XHTML from those artifacts, that are
intended only for a particular typesetting?
Hans once told me he uses processing instruc-
tions — <?…?> tags — in XML; in MEOEDIT we are
using a combination of custom classes, attributes
and CSS properties in the style attribute of an
XHTML element.
That can be the subject of presentations to come
at the next meetings.

7.2 ConTEXt and Docker

Using ConTEXt inside a Docker container can be
also good to “scale up” ConTEXt: not the paral-
lelization of a single job, but multiple distinct jobs
that run in parallel using all the cores of a CPU
on one or multiple PCs. There’s room for further
development and discussion.

Notes

1
www.isc-studyofcapitalism.org

2
www.edizionilottacomunista.com

3
www.princexml.com

4
www.xmlmind.com/xmleditor

5
meo-correzione.org

6
www.docker.com

7
expressjs.com

8
github.com/jgm/gitit

9
docs.docker.com/compose

102 102

102 102

