
luatex version 1.0.0 > hans hagen

55

LuaTEX version 1.0.0
Hans Hagen

The release
After some ten years of development and testing,
on September 9, 2016, we released LUATEX 1.0.0!
It happened at the tenth meeting of the ConTEXt
users and developers group in the Netherlands.
Instead of staying below one and ending up with
versions like 0.99.1234, we decided that the mo-
ment was there to show the TEX audience that
LUATEX is stable enough to lose its beta status.
Although functionality has evolved and sometimes
been replaced, we have been using LUATEX our-
selves in production right from the start. Of course
there are bugs and for sure we will fix them.
Our main objective was and still is to provide a
variant of TEX that permits user extensions without
the need to adapt the inner workings. We did add
a few things here and there but they mostly relate
to opening up the inner parts and/or the wish to
influence some hard-coded behaviour. Via Lua we
managed to support modern functionality with-

out bloating the code or adding more and more
dependencies on foreign code. In the process a
stable and flexible MetaPost library became part
of the engine.
The functionality as present now will stay. We
might open up some more parts, we will stepwise
clean up the code base while staying as close as
possible to the Knuthian original, we will try to
document bits and pieces. We might also experi-
ment a bit with better isolation of the backend, and
simplify some internals. For that we can use the
experimental version but if we diverge too much
we may need to give that another name.
We want to thank all those who have tested the
betas and helped to make LUATEX better.

Hans Hagen
Hartmut Henkel
Taco Hoekwater
Luigi Scarso

55 55

55 55



contextgroup > context meeting 2016

56

The past
Originally we planned to release the first version
a few years ago but our ambitions didn’t work out
well with that schedule so we finally took a decade
to get there. For the record it is good to summarize
what happened during those years.

• Around 2005, after we talked a bit about
extending TEX in a flexible way and Hart-
mut added the Lua scripting language to
pdfTEX as an experiment. This add-on was
inspired by the Lua extension to the SCITE
editor that I (still) use.

• At that time one could query counter reg-
isters and box dimensions and print strings
to the TEX input buffer.

• The Oriental TEX project then made it pos-
sible to go forward and come up with a
complete interface. For this, Taco con-
verted the code base from Pascal to C, a
quite impressive effort.

• We spent more than a year intensively dis-
cussing, testing and implementing the in-
terface between TEX and Lua. Many bina-
ries and lots of test code were flying be-
tween Taco and my machine as we pro-
gressed and decided what directions to go.
These were really interesting times.

• In successive years we polished things and
extended bits and pieces and in recent
years we cleaned up interfaces, polished
some code, filled in gaps and reached the
point where we were more or less satisfied.

• The core is still traditional TEX, but has been
extended with pdfTEX protrusion and ex-
pansion (reworked) and directional features
from Aleph (cleaned up). We did add some
extensions (in 𝜀-TEX fashion) but removed
most of the ones that we inherited from
pdfTEX because Lua could do better.

• The backend and extension interfaces
are now mostly separated and although
we don’t expect to add more backends, it
makes the code somewhat cleaner because
all kinds of PDF-related issues are no longer
mixed with front-end mechanisms.

• The font subsystem is no longer limited
to 8-bit fonts. It must be noted that for
instance OpenType support is done in Lua,

which provides a lot of flexibility. This also
serves as an example of extensibility. A
small TEX core, independent of libraries,
was definitely an objective and it works out
well.

• The (rewritten but compatible) hyphen-
ation machinery can use runtime loaded
(and extended) patterns. There are a few
extensions and of course one can revert to
Lua for more.

• Already at an early stage, hyphenation, lig-
aturing and kerning were separated, which
was one step in adding callbacks to nearly
every stage in the typesetting process.

• Math supports wide (more than 8-bit)
characters too so that one can implement
Unicode math easily. The machinery has
OpenType math code paths because there
are some fundamental differences with tra-
ditional TEX math fonts.

• Although the kpse library is still the default
interface to the file system, all in- and out-
put can be controlled and intercepted, for
instance for input filtering or re-encoding
on the fly.

• The token scanner has been opened up so
that one can write (simple) parsers. Experi-
mental interception code didn’t prove to be
useful so that interface has been dropped.
We kept it simple and efficient.

• During callbacks related to the node lists,
individual nodes can be accessed and ma-
nipulated at will. Of course one needs to
know a bit about the internals and not
mess up the lists to the extent that TEX will
choke on it: things that ‘can’t happen’ now
can. Most of the original documentation of
the code by Don Knuth still applies (which
was another objective) but of course di-
rectional support and such go beyond that.
And it’s surprisingly fast.

• Images and reusable boxes are now native
nodes; they travel through the system as
special kinds of rules instead of whatsits
with dimensions. Users can define their
own rule types too.

There is more to say but much has been re-
ported already in articles in this and other journals.

56 56

56 56



luatex version 1.0.0 > hans hagen

57

In the ConTEXt distribution there are four docu-
ments describing aspects of the development and
choices we have made (mkiv.pdf, hybrid.pdf,
about.pdf and still.pdf) and we keep writing
(onandon.pdf). One thing will hopefully be clear
by now: the choice of Lua was a good one.

The future
The project is driven by ConTEXt users and ConTEXt
development which is why we found it proper to
release version one at the tenth meeting. Right
from the start ConTEXt supported LUATEX and this
means that most mechanisms have been tested in
production. There is some risk in this as users then
are always forced to update the binary with the
macros but the ConTEXt garden provides easy ways
to deal with this. In fact, most users switched to the
new engine pretty soon after we started rewriting
ConTEXt. We greatly appreciate their patience with
us.
Raw performance of LUATEX is of course less than
8-bit pdfTEX but in practice and on modern ma-
chines LUATEX behaves well. In fact, many mech-
anisms, like native XML handling and MetaPost
processing are way faster in ConTEXt MkIV then in
the now frozen MKII version. Given the fact that
we’re using Unicode and more complex fonts, one
can safely assume that in ConTEXt the overhead
due to delegation to Lua has no real drawbacks.
We will continue development, but functionality
will stay stable within versions. The code will be
further streamlined and documented. We delib-
erately postponed some cleanup till after version
one. And of course bugs will be fixed. We hope to
stepwise improve the manual too. So what will the
future bring?

• So far we managed to avoid extensions be-
yond those needed as part of the opening
up. We stick close to Don Knuth’s concepts
so that existing documentation still con-
ceptually applies. We keep our promise
of not adding to the core. But, we might
open up (make configurable) some of the
remaining hard-coded properties.

• Some node lists can use a bit of (non-crit-
ical) cleanup, for instance passive nodes,
localpar nodes, and other leftovers. Maybe
we should add missing left/right skips.

• We can optimize some callback resolution
(more direct) so that we can gain a little
performance.

• Inheritance of attributes needs checking
and maybe we need to permit some more
explicit settings.

• We will move some more code to the API
file and plan to update the global PDF and
Lua states consistently (there are some
leftovers from the early days). Some C
macros can probably go away.

• We can possibly minimize some return val-
ues of Lua functions and only return nil
when we expect multiple calls in line. This
might be more efficient. We plan to look
into Lua 5.3 but we might well conclude
that it’s better to stick to 5.2.

• We have to figure out a way to deal with
literals in virtual characters. This relates to
font switching in the result.

• Maybe we will reorganize some code so
that documentation is easier. We hope to
continue to stick close to what Don Knuth
documents.

• We can clean up and isolate the backend
a bit more. We also could add a few more
options to delegate actions to Lua and we
should get rid of some historic PDF artifacts.

Of course we have some ideas of what to do next
but these don’t need an extension to the engine
because we can use Lua for that.
In that perspective it is tempting to think of a (lean
and mean) LUATEX variant for ConTEXt: a close to
traditional core with many hooks and a minimal
number of dependencies on libraries and such. In a
ConTEXt setup a only user needs LUATEXbecause all
(workflow) related scripts are written in Lua and if
additional functionality (like graphic conversions)
is needed, it can easily be provided by external
programs.
We will not touch the stable version unless it con-
cerns bug fixes and/or simple extensions, but we
will keep exposing ConTEXt users to the experi-
mental branch (as we do now). Of course users of
other macro packages can pick up binaries from
the compile farm that has been set up by Mojca
and friends.
So . . . be prepared.

57 57

57 57


