contextgroup > context meeting 2012

Oriental TeX: optimizing paragraphs

Hans Hagen & Idris Samawi Hamid

Introduction

One of the objectives of the Oriental TgX project has always been to play with paragraph
optimization. The original assumption was that we needed an advanced non-standard
paragraph builder to Arabic done right but in the end we found out that a more
straightforward approach is to use a sophisticated OpenType font in combination with
a paragraph postprocessor that uses the advanced font capabilities. This solution is
somewhat easier to imagine than a complex paragraph builder but still involves quite
some juggling.

At the June 2012 meeting of the ntg there was a talk about typesetting Devanagari
and as fonts are always a nice topic (if only because there is something to show] it
made sense to tell a bit more about optimizing Arabic at the same time. In fact, that
presentation was already a few years too late because a couple of years back, when
the oriental TeX project was presented at tug and Dante meetings, the optimizer was
already part of the ConTgXt core code. The main reason for not advocating is was the
simple fact that no font other than the (not yet finished) Husayni font provided the
relevant feature set.

The lack of advanced fonts does not prevent us from showing what we're dealing with.
This is because the ConTgXt mechanisms are generic in the sense that they can also be
used with regular Latin fonts, although it does not make that much sense. Anyhow,
in the next section we wrap up the current state of typesetting Arabic in ConTgXt.
We focus on the rendering, and leave general aspects of bidirectional typesetting and
layouts for another time.

This article is written by Idris Samawi Hamid and Hans Hagen and is typeset by ConTgXt
MKIV which uses LuaTgX. This program is an extension of TgX that uses Lua to open op
the core machinery. The LuaTgX core team consists of Taco Hoekwater, Hartmut Henkel
and Hans Hagen.

Manipulating glyphs

When discussing optical optimization of a paragraph, a few alternatives come to mind:

e One can get rid of extensive spaces by adding additional kerns between glyphs.
This is often used by poor man’s typesetting programs (or routines) and can be
applied to non-connecting scripts. It just looks bad. Of course, for connected
scripts like Arabic, inter-glyph kerning is not an option, not even in principle.

e Glyphs can be widened a few percent and this is an option that LuaTgX inherits
from its predecessor pdfTgX. Normally this goes unnoticed although excessive
scaling makes things worse, and yes, one can run into such examples. This

52

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

strategy goes under the name hz-optimization (the hz refers to Hermann Zapf,
who first came up with this solution).!

e A real nice solution is to replace glyphs by narrower or wider variants. This is
in fact the ideal hz solution —including for Arabic-script as well— but for it
to happen one not only needs needs fonts with alternative shapes, but also a
machinery that can deal with them.

e An already old variant is the one first used by Gutenberg, who used alternative
cuts for certain combinations of characters. This is comparable with ligatures.
However, to make the look and feel optimal, one needs to analyze the text and
make decisions on what to replace without loosing consistency.

The solution described here does a bit of everything. As it is mostly meant for a
connective script, the starting point is how a scribe works when filling up a line nicely.
Depending on how well one can see it coming, the writing can be adapted to widen
or narrow following words. And it happens that in Arabic-script there are quite some
ways to squeeze more characters in a small area and/or expand some to the extreme
to fill up the available space. Shapes can be wider or narrower, they can be stacked
and they can get replaced by ligatures. Of course there is some interference with the
optional marks on top and below but even there we have some freedom. The only
condition is that the characters in a word stay connected.?

So, given enough alternative glyphs, one can imagine that excessive interword spacing
can be avoided. However, it is non-trivial to check all possible combinations. Actually,
it is not needed either, as carefully chosen aesthetic rules put some bounds on what
can be done. One should more think in terms of alternative strategies or solutions and
this is the terminology that we will therefore use.

Scaling glyphs horizontally is no problem if we keep the scale factor very small, say
percentages. This also means that we should not overestimate the impact. For the
Arabic script we can stretch more —using non-scaling methods— but again there are
some constraints, that we will discuss later on.

In the next example, we demonstrate some excessive stretching:

In practice, fonts can provide intercharacter kerning, which is demonstrated next:

We are texies] We are texies!

Some poor man's justification routines mess with additional inter-character kerning.
Although this is, within reasonable bounds, ok for special purposed like titles, it looks
bad in text. The first line expands glyphs and spaces, the second line expands spaces
and add additional kerns between characters and the third line expands and add extra
kerns.

—

Sometimes hz-optimization also goes under the rubric of ‘Semitic justification’. See, e.g., Bringhurst in
pre—3rd editions of his Elements of Typographic Style. This technique does not work well for Arabic script in
general because glyphs are connected in two dimensions. On the other hand, a certain basic yet ubiquitous
Semitic justification can be achieved by using the tawil character, commonly called the kashidah (U+0640).
We will discuss this later in this article.

2 Much of this is handled within the GPOS features of the OpenType font itself (e.q., mark and mkmk])

53

contextgroup > context meeting 2012

We are texies!

Unfortunately we see quite often examples of the last method in novels and even
scientific texts. There is definitely a down side to advanced manipulation.

Applying features to Latin-script

It is easiest is to start out with Latin, if only because it's more intuitive for most of us
to see what happens. This is not the place to discuss all the gory details so you have to
take some of the configuration options on face value. Once this mechanism is stable
and used, the options can be described. For now we stick to presenting the idea.
Let's assume that you know what font features are. The idea is to work with combi-
nations of such features and figure out what combination suits best. In order not to
clutter a document style, these sets are defined in so called goodie files. Here is an
excerpt of demo. 1fg:

return {
name = "demo”,
version = "1.01",
comment = "An example of goodies."”,
author = "Hans Hagen",
featuresets = {
simple = {
mode = "node"”,
script = "latn”
¥
default = {
mode = "node",
script = "latn”,
kern = "yes",
1,
ligatures = {
mode = "node”,
script = "latn",
kern = "yes",
liga = "yes",
1
smallcaps = {
mode = "node”,
script = "latn",
kern = "yes",
smcp = "yes”,
i
}'

solutions = {
experimental = {
less = {
"ligatures”, "simple”,

3

54

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

more = {
"smallcaps”,
I
}?
¥o
3

We see four sets of features here. You can use these sets in a ConTeXt feature definition,
like:

\definefontfeature
[solution-demo]
[goodies=demo,

featureset=default]

You can use a set as follows:

\definefont
[SomeTestFont]
[texgyrepagellaregular*solution-demo at 10pt]

So far, there is nothing special or new, but we can go a step further.

\definefontsolution
[solution-al]
[goodies=demo,

solution=experimental,
method={normal, preroll},
criterium=1]

\definefontsolution
[solution-b]
[goodies=demo,
solution=experimental,
method={normal, preroll,split},
criterium=1]

Here we have defined two solutions. They refer to the experimental solution in
the goodie file demo.1fg. A solution has a less and a more entry. The featuresets

55

w

contextgroup > context meeting 2012

mentioned there reflect ways to make a word narrower or wider. There can be more
than one way to do that, although it comes at a performance price. Before we see how
this works out we turn on a tracing option:

\enabletrackers
[builders.paragraphs.solutions.splitters.colors]

This will color the words in the result according to what has happened. When a
featureset out of the more category has been applied, the words turn green, when less
is applied, the word becomes yellow. The preroll option in the method list makes sure
that we do a more extensive test beforehand.

\SomeTestFont \startfontsolution[solution-a]
\input zapf \par
\stopfontsolution

In Figure 1 we see what happens. In each already split line words get wider or narrower
until we're satisfied. A criterium of 1 is pretty strict’. Keep in mind that we use some
arbitrary features here. We try removing kerns to get narrower although there is
nothing that guarantees that kerns are positive. On the other hand, using ligatures
might help. In order to get wider we use smallcaps. Okay, the result will look somewhat
strange but so does much typesetting nowadays.

Coming back Tb THE USE OF TYPEF}AkEs
IN ELECTRONIC PUBLISHING: MANY OF THE
NeW TYPOGRAPHERS RECEIVE THEIR kpo’wﬂ-

Coming back fo the use of typefaces
in electronic publishing: mgng: of ﬂhe
ne’w fcypogrbphers receivk ﬂhqr kgo’wﬂ-

edge and information about the rules of
typogrbphbl fI‘OII}l“:bOOk\S',kO"wa'OIn computer
magazines or the instruction manuals
which ﬂheb‘r_ kt wi e purchase of a
PC or soﬂtaw re. There is no}t so much
basic ins uction, as of now, as there was
in tﬂm old dabfs, sho’Wing tﬂié Qigﬁprences
beWpen good and bad typographic de-
sign. Manbr people are just fascinated
bbf tﬂ1eir PC's tricHs, and think that a
widely-praised program, called up on

he screen, will mak e% Yﬂling autk)—
matic from now on.

edgk and inﬁormation about ﬁhé r‘lﬂes of
typogﬁap from book‘s',j from computer
magazines OR THE INSTRUCTION MANUALS
WHICH THEY GET WITH THE PURC‘(HASF_ OF A
PC or SOFTW‘ARE. THERE Is ‘NHT SO MUCﬁI
in tﬂ{e old dabls, sho’Wing tﬂ{é digﬁprences
between coop anp bad typographic de-
DESIGN‘. Many people are jus}t ﬂascinated
bb] THEIR PC's TRICﬁS, AND THINK THAT A
widelbl—prbised prog‘r m, C‘ALLED UP ON
THE SCREEN, WILL MAKE EVERYTHING auto-
matic from now on.

normal

Figure 1: Solution a.

solution

This number reflects the maximum badness and future versions might have a different measure with more

granularity.

56

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

There is one pitfall here. This mechanism is made for a connective script where
hyphenation is not used. As a result a word here is actually split up when it has
discretionaries and of course this text fragment has. It goes unnoticed in the rendering
but is of course far from optimal.

\SomeTestFont \startfontsolution[solution-b]
\input zapf \par
\stopfontsolution

In this example (Figure 2] we keep words as a whole but as a side effect we skip words
that are broken across a line. This is mostly because it makes not much sense to
implement it as Latin is not our target. Future versions of ConTgXt might get more
sophisticated font machinery so then things might look better.

Coming back to the use of typefaces| | Coming back 10 THE USE OF TYPEFACES
in electronic publishing: mz;}ngi of tﬂle IN ELECTRONIC PUBLISHING: MANY OF THE
ne}w typogﬁaphers receivk ttheiﬂr k}flo"fvh‘ ne’w TYPOZRAPHERS RECEIVE THEIR kpo’wﬂ-
edge and information about the rules of edgﬁe and inﬂormation about tthe ﬁules of
typogﬂaphbf fromd,book‘s,‘v from computer typogrbphbl from bool#s; from computer
magazines or the instruction manuals| |magaziNEs OR THE INSTRUCTION MANUALS
which tﬂleb/ t with the purchase of a wmc‘u THEY GET WITH THE PURCHASE OF A
PC or soﬂtﬂw re. There is no}t so much| |PC or SOFTW‘ARE. THERE 15 NMT so MUC‘H
basic instruction, as of now, as there was - }J
in tthe old dabfs, sho’wing ﬂhé diﬁerences in ﬂhé old dabfs, shoMing ﬂhke cliﬁprences
betwken good and bad typog{ aphic de-| |berween Goop and bad typoéf@phic de-
sign. Many people are just fascinated| |sign. MANY peOPLE ARE JUST FASCINATED
bbf ﬂheir PC's trick‘s, Hgnlnd ink tﬂ‘lat a bbf THEIR PC's TRICKS, AND THINK THAT A
widely-praised program, called up on widelbf—pﬁaised program, CALLED UP ON
e screen, will ma e’vkrbl ing auﬂo- THE SCREEN, WILL MAKE EVER| THINk) AUTO-
matic from now on. matic from now on.

normal solution
Figure 2: Solution b.

We show two more methods:

\definefontsolution
[solution-c]
[goodies=demo,

solution=experimental,
method={reverse,preroll},
criterium=1]

57

contextgroup > context meeting 2012

\definefontsolution

[solution-d]

[goodies=demo,
solution=experimental,
method={random,preroll,split},
criterium=1]

In Figure 3 we start at the other end of a line. As we sort of mimick a scribe, we can be
one who plays safe at the start of corrects at the end.

in electronic pubhshmg man

}w typogrbphers recelv e1r kno h
edg and information about ﬂhe rﬁlles of
typogrLap from books, from computer
magazines or he instr uétion manuals
which ﬂh b’ t with the purchase of a
PC or soﬂtw re. There is not so much
bas;q‘lnsftﬁuctlon as of now as there wbs
in tﬂ'1e old dabls, shoMing e differences
betw}sen good and bad typoér:phic de-
sign. Many people are just fascinated
bbl tﬂ*telr PC's tricks, and think that a
w1delbi—prb1sed program, called up on

e screen, will make everything autb-
matic from now on.

Coming back to ﬂhe use of tg:peﬂaces

CleNh VB}AMK fp THE USE OF typeﬂaces
IN ELECTRONIC publishing: mMANY OF THE
NEW TYPOGRAPHERS RECEIVE THEIR kno’wtl
edgk and 1nﬂormat10n about ﬂhe rﬁlles of
typogﬂap from books, from computer
MA#AZINES OR THE INSTRUCTION MANUALS
WHICH THEY GET WITH THE PURCHASE OF A
PC or SOFTWL\RE. THERE 18 NHF so much
in tﬂw old dabls, sho’wing tthe difﬂerences
betwken good and bad TyrocrarHIC de-
DJ:SIGN‘ MANY PEOPLE ARE JUS ﬁAsaN h ED
Bﬂ THEIR PC's TRICKS, AND THINK THA[A
WIDELF—PRAISED PROGRAM, C‘ALLED up ON
THE SCREEN|, WILL make EVERYTHING au
matic from no}w on.

normal

solution

Figure 3: Solution c.

In Figure 4 we add some randomness but to what extent this works well depends on
how many words we need to retypeset before we get the badness of the line within the
constraints.

Salient features of Arabic-script

Before applying the above to Arabic-script, let's discuss some salient aspects of the
problem. As a cursive script, Arabic is extremely versatile and the scribal calligraphy
tradition reflects that. Digital Arabic typography is only beginning to catch up with the
possibilities afforded by the scribal tradition. Indeed, early lead-punch typography and
typesetting of Arabic-script was more advanced than most digital typography even up
tothis day. Inany case, let us begin to organize some of that versatility into a taxonomy
for typography purposes.

What's available?

We have to work within the following parameters:

58

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

Coming back to the use of typefaces
in electronic publishing: mqngi of the
ne}w typogﬁaphers receivk their kpo}wﬂ-
edge and information about the ﬁules of
typogﬂaphbl fromﬂbook‘s,ﬂ from computer
magazines or the ins r'w ction manuals
which ttheb/ t wiﬂh tﬂie purchase of a
PC or soﬂtaw re. There is not so much
basic instruction, as of no}wl‘ras ere was
in tjhe old dabfs, shoMing e differences
betwken good and bad typographic de-
sign. Manbl people are jus}’g“ scinated
bbf heir PC's trick‘s;y“gamd hink that a
W;delbf—prbised program, called up on

e screen, will ma e&kr’ytﬁhmg auﬂo-

ComiNG back To THE use OF TYPEFACES
IN ELECTRONIC PUBLISHING: MANY OF "EHE
new typographers receive THEIR KNOWL-
edge and information about tthe ﬁules of
typogrbphbl from booHS, from computer
magAZINES OR THE INS CTION MANUALS
WHIC‘H THEY GET WITH THE PURCHASE OF A
PC or SOFTwL\RE, THERE is NOT sO much

fruc wlas there wh

in ﬂl{e old dabis, shoMing ﬂﬁe difijprences
betwgen coop and bad typocrarnic de-
sign. MANY peOPLE ARE]US’T F%SCIN \]fED
Bﬁ(THEIR PC's TRIC‘KS, AND THINK THAT A
WIDELY—PRAISED PrOGRAM, CALLED UpP ON
THE SCREEN, WILL ma EVER| THINky Ai
matic from now on.

oK

matic from now on.
normal

solution

Figure &4: Solution d.
e No hyphenation ever (well, almost never)

It is commonly pointed out that there is no hyphenation is Arabic. This is
something of a half-truth. In the manuscript tradition one actually does find
something akin to hyphenation. In the ancient Kufic script, breaking a word
across lines is actually quite common. But even in the more modern Naskh script,
the one most normal Arabic text fonts are based on, it does occur, albeit rarely
and presumably when the scribe is out of options for the line he is working on.
Indeed, one could regard it as a failure on the part of the scribe once he reaches
the end of the line.*

But there is still an important rule, regardless of whether we use Naskh, Kufic, or

any other Arabic script. Consider the word below:

Itis a single word composed of two cursive strings. One could actually hyphenate
it, with our rule being to break it at the end of the first cursive string and before
the beginning of the second cursive string:

AR
Ldfﬁ.u
Je

* Indeed, even Latin hyphenation, when it occurs, can be considered a ‘failure’ of sorts.

59

contextgroup > context meeting 2012

Again, it's a rare phenomenon and hardly ever occurs in modern typesetting,
lead-punch or digital, if at all. On the other hand, it could have some creative
uses in future Arabic-script typographuy.

e Macrotypography (aesthetic features)

In Arabic there are often numerous aesthetic ways of writing out the exact same
semantic string:®

Ad) A s

Normally we put combine OpenType features into feature sets that are each
internally and aesthetically coherent. So in the above example we have used
three different sets, reading from right to left. We'll call them simple, default,
and dipped.

Just as Latin typography uses separate fonts to mark off different uses of text
(bold, italic, etc.), an advanced Arabic font can use aesthetic feature sets to similar
effect. This works best on distinguishing long streams of text from one another,
since the differences between feature sets are not always noticeable on short
strings. That is, two different aesthetic sets may type a given short string, such
as a single word, exactly the same way. Consider the above three sets (simple,

default, and dipped] once more:

" "

For the above string the default and dipped aesthetic sets (middle and left) give
the exact same result, while the basic one (right) remains, well, quite basic.
Let's go back to our earlier example:

A& A asd!

Note that the simple version is wider than the default, and the dipped version
is (slightly) thinner than the default. This relates to another point: An aesthetic
feature set can serve two functions:

1. It can serve as the base aesthetic style.

2. It can serve as a resource for glyph substitution for a given string in another
base aesthetic style.
This brings us back to our main topic.

> This five character string can be represented in Latin by the five character string ‘al-md’ (not including the
'-']. Itis pronounced ‘al-amdu’. Note that Arabic script is mainly consonantal: pure vowels are not part of
the alphabet and are, instead, represented by diacritics.

60

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

e Microtypography (paragraph optimization features)

Here our job is to optimize the paragraph for even spacing and aesthetic viewing.
It turns out that there are a number of ways to look at this issue, and we will begin
exploring these in the next subsection.

Two approaches

Let us start off with a couple of samples. Quranic transcription has always been the gold
standard of Arabic-script. In Figure 5 we see a nice example of scribal optimization.
The scribe here is operating under the constraint that each page ends with the end

Figure 5: Scribal Optimization. Scribe: Uthman aha. Quran, circa 1997.

61

contextgroup > context meeting 2012

of a Quranic verse (designated by the symbol U+@6DD Cf:)] That is, no verse is broken
across pages. That constraint, which is by no means mandatory or universal, gives the
scribe lots of space for optimization, even more than normal.

In Figure 6 we have a page of the famous al-Husayni Muaf of 1919-1923, which remains
up to this day the only typeset copy of the Quran to attain general acceptance in the
Muslim world. Indeed, it remains the standard ‘edition’ of the Quran and even later
scribal copies, such as the one featured in Figure 5 are based on its orthography. Unlike
the scribal version, the typesetters of the al-Husayni Muaf did not try to constrain each
page to end with the end of a Quranic verse. Again, that is a nice feature to have as it
makes recitation somewhat easier but it is by no means a mandatory one.

In any case, both samples share verses 172-176 in commmon, so there is lots to
compare and contrast. We will also use these verses as our main textual sample for
paragraph optimization.

Using Figure 5 and Figure 6 as benchmarks, we can begin by analyzing the approaches
to paragraph optimization in Arabic-script typography into two kinds:

e Alternate glyphs

Much of pre-digital Arabic typography uses this method. Generally, a wide
variant of a letter is used to take up the space which would normally get absorbed
by hyphenation in Latin. Here are examples of three of the most common
substitutions, again, reading from right to left:

Lo b obel - bl

L]

Each of the six strings above occurs in Figure 6. Identifying them is an exercise
left to the reader. We call these kinds of alternate glyphs alternate-shaped glyphs.
The three substitutions above are the most common alternate-glyph substitu-
tions found in pre-digital Arabic-script typography, including some contextual
variants (initial, medial, final, and isolated) where appropriate. (The scribal
tradition contains a lot more alternate-shaped glyphs. A few lead-punch fonts
implement some of them, and we have implemented many of these in our
Husayni font.) The results generally look quite nice and much more professional
than most digital Arabic typography, which generally dispenses with these
alternates.

But one also finds attempts at extending individual characters without changing
the shape very much. One finds this already in Figure 6. We call these kinds of
alternate glyphs naturally curved widened glyphs, or just naturally widened glyphs
for short. Sometimes this is done for the purpose of making enough space for the
vowels [which in Arabic take the form of diacritic characters). For example:

L -

/wﬁ-,_, <
Ls: D - el
- b4

62

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

Figure 6: Alternate Fixed Glyphs. From the al-Husayni Muaf of the Quran, 1923.

Asyou can see, there are two letters that have been widened for vowel accommo-
dation. In Figure 6 there are some good but near-clumsy attempts at this. We say,
‘near-clumsy’ because the typographers and typesetters mix natural, curved,
widened variants of letters with flat, horizontal, extended versions. One reason
for this is that a full repertoire of naturally curved glyph alternates would be
much too unwieldy for even the best lead-punch typesetting machines and their
operators. Even with these limitations one can find brave examples of lead-based
typesetting that do a good job of sophisticated paragraph optimization via glyph

63

contextgroup > context meeting 2012

alternates, both widened and alternate-shaped. Figure 7 is a representative
example (in the context of columns).

Careful examination of this two-column sample will reveal the tension between
naturally widened and horizontally extended glyphs in the execution of paragraph
optimization. On the other hand, there is one apparent ‘rule’ that one finds in this
and other examples of lead-punch Arabic-script typesetting:

Generally, there is only one naturally widened character per word or one alternate-shaped
character per word.

In Figure 5 one can see that this 'rule’ is not always observed by scribes, see, e.q.,
the middle word in line 9 from the top, which uses two of the alternate-shaped
characters we encountered above (can you identify that word?). But we still need
some constraints for decent-looking typesetting, and the above tentative rule is a
good place to start the analysis. For widened characters in particular we see that
even the scribe (Figure 5) closely approximates this rule. So let's begin improving
on our tentative rule somewhat, and expand it into a number of possibilities. Let's
look at the naturally-widened-glyph case first:

Generally, there is only one naturally widened character allowed per word. However, two
extended non-consecutive characters may be allowed. (The logic of the experimental font
Husayni already has contraints that prevent consecutive curved widened characters).

For example, we prefer to get widening like the following:

T

But as, e.qg., a last resort or for stylistic purposes we can also do

gg

Or even better, we mix it up a bit. That is, if there is more than one widened
character, one should be longer than the other, e.g.:

gg

One will notice that the middle substitution (where the first widened character is
longer than the second] does not look as good as the two outer ones (where the
second is longer than the first). These kinds of aesthetic issues can be formalized
for future work. In the meantime, here is a working modified version of the rule
for naturally-widened-glyphs:

64

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

W

— VY — é—a

S Z Ve »

(ULJ«J‘)3« W ey » (5,3
tely el ol
o] gy sl ol oy ()
.c\jlu'r_':i{ ‘c_._.ffn(é_ﬂl),
Zhy o Oy iy a3,
G U ()5 - f Tl
@l (e) (D) 5L Y
(W5 Ut(;.;);
)\ J.,\. ((.,L___:Jl)s
((l_\), . r)_..l\ >y f_i_.:ll, . ;LL.
Gl ool Aoty - g T G
M(pl)g&Sﬁj . ;C.d’(
S (r:lj\)) rb\-:i_u@\ Py
Fla (D, i
;\(;E;T), . ilui\(ﬂ\.iﬁ),
a3 5o Yo 510 Uy LT

o-\’\ ‘_g

5 " 54 G.0. G- .-
o (Jay et + 9l

sl (ko) s o 42
Q‘.’Jr«' (@——-) —rdo %
(G5 alaT o ()
T) s+ do ol m o
Ay ey (05 o
ui(pl), (rm;zlﬁi)w

P

(o) s+ adl sl ,J\ °La,.n o ,,s
P‘“c‘*é‘“)" H..a.sl
'L-rhda’s“(fji—*”)-\rb
9 51 s pt_.-il(g_i\);
laiag 3y o 671 L
sl ()5 eyl
é\-—:}b gy 5L S o
Sy OO i Feop
<?>‘—3\>: -‘<1»>13*F>k—3‘>}

[b e (L) — 1 J o % | L;\.“m;u\ ,o(wpu
w(u,),.mu. Q)i J,agu,..ﬂ “u\(.;«__u}
«L.l,,JIJQU.JJYuTc\'VW | |—>L.d_,f:(\)

Figure 7: Mixed Alternate Glyphs in Two Columns. From the classical dictionary Mukhtar al-ia.

contextgroup > context meeting 2012

Generally, there is only one naturally widened character allowed per word. However, two non-
consecutive widened characters may be allowed. In that case, the second widened character
should be longer than the first.

One case where cases of two naturally widened character will be common is in
poetry, which involves wide lines. We'll say more about this in the section on flat
extending.

Now let’s look at the alternate-shaped case:

Generally, there is only one alternate-shaped character allowed per word. However, two non-
consecutive alternate-shaped characters may be allowed.

So we prefer, e.q.,

NEEJC O @
PIVCCINIR @
but we could have, e.g, as a last resort or as a stylistic option,
. - E P L.) -)

Again, in poetry this kind of multiple substitution within a single word could occur
frequently. A challenge will be to develop a system of parameters where we can
almost predict which kinds of substitution will happen under a given set of values
of those parameters.

e Flat extending

In the transition from lead-punch to digital typography, alternate-glyph sub-
stitution largely vanished.® The problem of spacing remained, and a simple yet
inelegant solution was adopted: flat, horizontal extending of characters. Now
this solution did have some precedent in pre-digital Arabic typography, as you
can see in Figure 6 and Figure 7. This solution had the advantage that it required
only a single character: a simple horizontal bar called a tawil or more commonly

® Indeed, as was the case with Latin typography, Arabic-script typography took a sharp turn for the worse
with the advent of digital typography. On the other hand, Latin typography recovered much more quickly,
in large part thanks to Knuth's development of TgX.

66

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

5 ol cdy 5 il 31 8¢ 5 T o 5207 58T o6 06
8 5o gadl 5 556 0T g stiadl saad B s g Irov] ool
B el 6 0l B eesdl 4 G G
SN U 5 WL T G5y i
RS E Pt AN T P
i W W ey 5 KA o 0T 56 BT 5,37 56 5 5
Aag S pke fr 5 B 9F G 2R SR0 V3]l G a3t 5 3
sk e AT o5 D s i g pKATY 5 T g ST
B
Figure 8: Poetry Justification in ArabTeX. ’

a kashidah (U+@640). This character could then be repeated as often as necessary
to fill any extra space.

Now an examination of pre-digital books shows a (rather wise] reticence to using
this method too slavishly. That reticence has now been thrown to the winds.
This can be seen by looking at the standard implementation of flat extending
as provided by Microsoft Word. This program provides three levels of extending
that it calls ‘justification’. See Figure 9 for examples of all three. The minimum
levelis actually very close to the default (i.e., no-justification) level. Note that the
sample text used in Figure 9 is the same as that used in the earlier samples from
the Quran.

Older implementations of Arabic-script within TgX, such as ArabTgX and Omega/
Aleph, also provided facilities for flat extending. The most common use was in
poetry, which requires a fixed width for each stanza.

In Omega/Aleph, a method based on \xleaders was used, based on a very
thin tawil glyph (much thinner than U+0640) that could be used for very fine
extending optimization based on TgX's badness parameter. One nice application
is in marginal notes: See Figure 10, where the marginal note on the right is
zoomed in. On the other hand, we see that the leaders method creates extending
that may be considered too perfectly even: Do we want to impose the rule that
only one character should be extended per word {or at most two non-consecutive
characters)? | have seen a lot of older digital Arabic typography that does even
extending, including the poetry in the ArabTeX sample in figure 8. Compare this
with the Microsoft Word method (Figure 9). The method used in Microsoft Word,
with only one extension per word, seems to be the current standard for flat-
extending justification.

On the other hand, the justification used in Microsoft Word is not particularly
aesthetically pleasing. The answer will lie, again, in parameterization of some
sort to be determined. As TeXies, we want to be able to have fine control over
this kind of behavior in any case. In the meantime, we mirror the same rule we
arrived at for naturally-widened-glyphs:

Generally, there is only one flat extended character allowed per word. However, two non-
consecutive extended characters may be allowed. In that case, the second extended character
should be longer than the first.

67

contextgroup > context meeting 2012

RN

i 1l w5) Vv Oyl s 2580 1K v{u)) G ol 2 5T 20 G

o ikl &) O e Ay 55 fuy)tu,;ju\wj Coln g8 Al g il i sl
22 Yoo e

w fs}b &) quu_ Al L G o O932kis 3)\;,,@ o Al Jp\ 5 ujmﬁ gﬁ,\.ﬁ\ ;:L \ VY

Ly N g JJJ\ S vve o Sike s 1 5 Vs a1 s

el VA

T

de.uu) L,A-uu\.ﬂ sl & VU:\VO)LJVQJ.;“’TL;;‘Z

e g S
s U\ VY OuiE 88 32K Y o) \);i_izg B85 G ol e, B2 51 L

fwu;_.cyjtu Jlg_,;\u_,d A_U\,:_;J J__a,\ L_,jﬂr;.\v_;.”u\)ud ke

LE o Opi kg «_)u_ﬁj\u_“_m JJ_A_AQ,_A&;J.L_S\ u\ yVY ‘,,_,.J)j_,,;‘_m_,

I

e g H_ff Vs a_z\;ah 255 400 H“L Y5 5 \7\ (;35_23 b QJ.K_, L é).éj SR

=

Vo U e i sl LS & syl oy sy BV g b sl S e

W e gl s gl sl B 0 Gy cush 3 8 e

VWY Syiia 85 2230 DK B 28U L ol e, B, 5T i D Ll
Ao
CL_, f]‘_‘"u—d & A_U\):_;J J_,,,\ L3 J_,r;-w L3 HJ\; HERR <,_1; A u\
:)_,34_1)\ N KN R SV s)j_zm_U\ G 4_1;;\&_»;;;&}
PR ‘ V z
r__@.y&y))umr@_udu,\fuu OB LT o bt kg LK)
AL D g Al Cﬁ,_ﬂ é)_;ij YV V*—S‘ NPINN Y Y O S Y e[S
= et e . B 4% P s T os.. of PR < 8
S < S S M- | e U SN W 2 W N 12 sa ol LGS el Sl
W e Gl O @ AR 5,0 S
Figure 9: Flat justification from Microsoft Word 2010.

For example:

In accordance with our working rule, the top substitution uses only one flat
extended character. The bottom uses two, but the second is longer than the first.

68

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

: VT (@aildly
; JE Y 4 (@

Figure 10: Marginal-note justification in Omega/Aleph.

In our own estimation, the smaller the type, as in, e.g., footnotes and marginal notes,
the less aesthetic variants that are needed. And the less aesthetic variants needed,
the better that flat extending will work as a solution. Consider another example of the

same word processed in three different variants:

A el Ll

In this case our default is on the left. The variant on the right is about as basic as one
can get; the default on the left is a sophisticated aesthetic variant. The middle one is,
well, in between. Let's try them with flat extending, using only one extended character

per word:

On the left, we have an aesthetic combination of letters followed by a flat tawil. This
is what Microsoft Word would give us, and the result is aesthetically distasteful. In
the word on the right, however, the flat extension fits well with the basic nature of the
feature set. As for the middle one, it could go either way and we leave it to the reader

to decide what one thinks.

Now let's repeat with more naturally curved widening:

N N e S e |

69

contextgroup > context meeting 2012

Here, the variant on the left comes out much nicer. The one on the right looks okay
with curved widening, although one could arguably do better with flat extending, at
least in some contexts. The middle one, again, could go either way, though we think
it does somewhat better with curved widening compared to the one on the right. The
variant on the left only works well with curved widening.

Towards a ConTgXt solution

In what follows, we will focus on a solution to the problem of paragraph optimization
via alternate glyphs (including alternately-shaped and naturally-widened variants). It
turns out that the \xleaders method used by Omega/Aleph does not work in LuaTgX,
so flat extending could not be naively implemented that way. At the moment flat
extending is yet to be implemented in ConTgXt.

Since flat extending is so ubiquitous in current Arabic-script typography, and since
it does have important applications (poetry and small font sizes where one prefers
simpler aesthetic variants), one could ask why this was not implemented first. In part,
this is because the immediate priority of the Oriental TeX project has been top-notch,
unparalleled aesthetic sophistication of the script. As we noted above, flat extending
does not work so well with sophisticated aesthetic variation. So although the flat-
extending problem is apparently simpler, it is understandable that we have focused on
the more difficult problem first. A clear understanding of the issues and challenges
involved with the more general alternate glyph method will help us implement a
solution to the the flat-extended problem as a special case. We will come back to
this issue towards the end.

Let us now consider the current experimental ConTgXt setup for paragraph optimiza-
tion for Arabic-script.

Applying Features to Arabic-script
We're now ready for the real thing: Arabic script. The initial setup is not that different
from the Latin-script case.

\definefontfeature
[husayni-whatever]
[goodies=husayni,

featureset=default]

\definefontsolution
[FancyHusayni]
[goodies=husayni,

solution=experimental]

\definefont

[FancyHusayni]
[file:husayni*husayni-whatever at 24pt]

70

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

But here the definitions in the goodies file look way more complex. Here we have only
one shrink set but multiple expansion sets.

local yes = "yes"

local basics = {
analyze = yes,
mode = "node"”,
language = "df1t",
script = "arab”,

}

local analysis = {
ccmp = yes,

init = yes, medi = yes, fina = yes,
3
local regular = {
rlig = yes, calt = yes, salt = yes, anum = yes,

ss@1 = yes, ss@3 = yes, ss@7 = yes, ss10 = yes, ssl12 = yes,
ss15 = yes, ss16 = yes, ss19 = yes, ss24 = yes, ss25 = yes,
ss26 = yes, ss27 = yes, ss31 = yes, ss34 = yes, ss35 = yes,
ss36 = yes, ss37 = yes, ss38 = yes, ss41 = yes, ss42 = yes,
ss43 = yes, js16 = yes,

3
local positioning = {
kern = yes, curs = yes, mark = yes, mkmk = yes,
3
local minimal_stretching = {
js11 = yes, js@3 = yes,
3
local medium_stretching = {
js12=yes, js@5=yes,
3
local maximal_stretching= {
js13 = yes, js@5 = yes, js@9 = yes,

3
local wide_all = {

js11 = yes, js12 = yes, js13 = yes, js@5 = yes, js@9 = yes,

3

local shrink = {
flts = yes, js17 = yes, ss@5
ss@9 = yes,

yes, ss11 = yes, ss06 = yes,

3
local default = {

basics, analysis, regular, positioning,

71

contextgroup > context meeting 2012

return {
name = "husayni”,
version = "1.00",
comment = "Goodies that complement the Husayni font by prof.Hamid."”,
author = "Idris Samawi Hamid and Hans Hagen"”,
featuresets = {
default = {
default,
Yo
minimal_stretching
default,
js11 = yes, js@3 = yes,
¥o
medium_stretching = {
default,
js12=yes, js@5=yes,
Yo
maximal_stretching= {
default,
js13 = yes, js@5 = yes, js@9 = yes,
Yo
wide_all = {
default,
js11 = yes, js12 = yes, js13
Yo
shrink = {
default, flts = yes,
js17 = yes,
ss@5 = yes, ss11 = yes, ss@6 = yes, ss@9
Yo
s
solutions = {
experimental = {
less = {
"shrink",
1,
more = {
"minimal_stretching”, "medium_stretching”, "maximal_stretching”,
"wide_all"

b

Il
-~

yes, js@5 = yes, js@9 = yes,

yes,

b
b

72

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

There are some 55 stylistic and 21 justification features. Not all make sense when
optimizing. We predefine some Lua tables to make the sets and solutions easier to
understand. The default rendering looks as follows:

\FancyHusayni

\righttoleft
\definefontfeaturelrasm][script=arab, ss@5=yes, js@6=no, ss55=yes]
\addff{rasm}

\getbuffer[sample]

\par

LT A J,:J\ @'Tumﬁg 2]
S a3 g 0Tk pasl U © sl u\JuJ\j L;lfi/
GG s G AT ol 815 © L cosi J]

Note that we already have a degree of widened substitution in this example. This is
all for the accommodation of vowels, and is defined entirely in the OpenType tables of
the font. We also added some special orthography (the rasm font feature to get the
Quranic features just right). You can also do this by adding the feature to the 1fg file
(local regular =). Thereis no paragraph optimization as yet, although the default
LuaTeX engine does a good job to start with.

Next we show a more optimized result:

73

contextgroup > context meeting 2012

\setupfontsolution
[FancyHusayni]
[method={preroll,normal},

criterium=1]

\startfontsolution[FancyHusayni]
\FancyHusayni
\righttoleft

\definefontfeaturel[rasm][script=arab, ss@5=yes, js@6=no, ss55=yes]
\addff{rasm}

\getbuffer[sample]
\par
\stopfontsolution
A Lo 24 X o4 /3/ _ / >
?Ju\%f»/ 1y el g,%; AR \j{ AR J,Js\ s |
2

°o 4 Sq M fﬂ}:/ _ é 2 - (Zon
sk @uﬁb‘u@ Mu
’;‘; - w

“la] PP A ! s Vto (O G A (- of_ o ~ 4 T
LT Bl 5l T30 o el Sk 25 28% 33
. " C ~

T © 5l olidh s
&£

(<]

Now let's see what happens when \parfillskip = @pt, i.e, the last line has no extra
space after the end of the paragraph. This is important for getting, e.qg., the last line of
the page to end with the end of a verse as we discussed earlier:

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

\setupfontsolution
[FancyHusayni]
[method={preroll,normal},

criterium=1]

\startfontsolution[FancyHusayni]

\FancyHusayni

\righttoleft
\definefontfeaturelrasm][script=arab, ss@5=yes, js@6=no, ss55=yes]
\addff{rasm}

\parfillskip=0pt

\getbuffer[sample]

\par
\stopfontsolution

o\

s S AT I um BN s}\ @ H‘ Sl

~
o %% -

;&ngJ:&u\iJJ‘ T e el T © 58
"Mduﬁgwfss\dw\umuv Hi

Just as the effegts are more V|S|ble inthe \parfillskip = @pt case, theimpactis much
larger when the available width is less. In figures 11, 12, 13, 14 and 15 we can see the
optimizer in action when that happens.

In our estimation, the current experimental solution works best for alternate-shaped
glyphs, although there is some success with naturally widened characters. Clearly,
some widened substitutions work better than others. A lot of fine tuning is needed,
both within the OpenType features as well as the optimization algorithm.

\h

75

contextgroup > context meeting 2012

76

~
;-—/
Y-

°

—
=g o
\
[N

A\ V2
o
\
@é\\ R

\
\
\,

U

&

—

. C.\
PN

\
L
\
\
N
\

.

G (- P AN
Slag aﬂ} " ,/j:y}f""\?‘fs
2
- - &

o 22 o Iy _ Lo, /f;
oo sl Al e S
AR L LA P N
ol & 1, K303 §‘»)) G oxb
P ,‘? . T2 el Z
FHCIN R

©
— 0w

—mn
.

kE\
G
&
C
X No——
“ G ¥
BN
\k'ﬂ\
t,&\'a.

WOy
.cx

S
-\

normal

Figure 11: A narrower sample (a).

AL

£

o 8 0 _ P Lo /j -
> lde= \j_iﬁ\i ;;,:k” Ce (5

e 5 S n Yy g

il Gl L3 f(vu
sl Sl sl

£ w °

Wp 2
\
\.C T}
2 U
{‘Z\\
o
%

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

o\'&oj}{}"/ TSR A= L0 sfew of 2 -
s SN0 }pj) > .;} d\;fl) bﬁij?w’.‘if/ L; - V/.w‘
/w/ }Q» }w oF. v) ? - -

L@ O S o g Gl o
té 23T 5 G T T s B

©
— e

é - oft. o <2 PR VA < - - L -

e i i el 85 e o 1S o gy

AT Sl S50 68 I horsr o T e e
& 5 @) [sl T g i

o‘/axl\: u\.,\:.”) L;.L‘L\:/ w‘ 5"?/101 2 :\;ST/ “_Q:L}ii

¢U\ O GJTJE?}//?T‘[;;G e - ‘/) 2 /E - 7

> o 5 soa . o (T3 ©

BB ECRE ey G il T

normal no parfillskip

Figure 12: A narrower sample with no parfillskip (b).

77

contextgroup > context meeting 2012

78

0o 82 o _ Lo, /ﬁi_{/
oo L6 Ll BT Ge
I 9 98 00 of

”j)i.u\/ g,e RGN
U‘szd} }o: ﬂt"?jd\/
ﬁ}} M‘} “wﬂ%@ (f‘

TAT 4 J’*‘ B3 st
s Y g e ST
G4 BT 0Lk B3
58 Gl S e
Sty sl 5 T s
6 AT Y e

. @ 5487

@ @FS\ Sk i Nf,
L Gl LT
F ol il

Aéf

normal

C 0

-
a (- a/“/L,

%"” 3

w
: 5”‘
Mgzjl

Figure 13: An even narrower sample (c).

narrow

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

\}/\E &zv\ﬁ L:é:‘:t/) PAEY s < . ii‘
I S gREETIAE
S ol e WS e |
o8 o & 1T N e
G| o bl & 5 1, AT
oy ; oL A }ﬂ‘} ;b:\;f.ﬂ ‘)\95‘»/; 15
s ¢ 7 ’“}9: @
Y Qo) o (] EIINEES
G g [@ =
5 el 4 @ oL 2AT T Lk
, [it 5 -l M

4 : & £ A7 .;) P Lo g
@ #2522 B0 e s e L uT O
Tl T Tos2&s 2T d A i s |
d_j\ dj«ia-ig ,:’\H J .| 7

144.‘53

—} wo—

g

G '
3
i

RSV

LoTee\s
Ch

o o

— w\
\hét\\ ‘l\ (o *
/L: k""ﬂ\»
\ 2 . <
o
Go

C

&

-

.cove)

C
‘e
-
o
3
\
e
-
3\
\
°
—
%\
\

[v4
A\Y

Y

%\

\

\
‘e
‘o

FEUINIEPR

3
\
E
lo
—
\
See
&
—
‘e
3
oz,

\s

(3
.-,‘/.-5\
- P

g " o8t ° w/} 7. ~ w
Slug by S % N S SN ~a \J-
LBPRE . — e p—;n{; Y
S O Y i N P S o SR
Sl AT /@a;c £ (ol T o]
LA
DRSSP A X il . .
CA Tt 2o NS SIARC R
:ASJ‘ L.)L. :,U‘.)‘\ /,‘,T?ﬁ /s V7 o ,"\"
5. 5 2 al ol ,LA\L,V

normal narrow

Figure 14: An even narrower sample (d].

79

contextgroup > context meeting 2012

80

I Sl e

©\
\

\g‘
—
-io
\
~
\

o &

\ — '

\
-\
‘o

—
\C -
\

01 sl FI30 50
(P %5 S A
T L& ;w..:\ST :)\;
s o, 4T G
y)ll; li:; dﬁ.g/:))fm&),/

Y; 50 : r‘g#
A a)] (:3; ’:&\ IR
Sike Yj
u,.)j\ Vw\ @ (J\
u,u LA T
af&n, u\.w\/

normal

o f£2 o Iy
bg\),«ai
b2 /5// B) ,,/

ST L @:@

L;HL;LL «UH,L‘\ \"” 1l

narrow

Figure 15: An even narrower sample (e).

oriental tex: optimizing paragraphs > hans hagen & idris samawi hamid

Without going into a detailed analysis at the moment, we restrict ourselves to two
critical observations.

First, in our tests one will notice that the glyph substitutions tend to take place on the
right side of the line. They should be more evenly distributed throughout each line.
Second, we can say that the current method works better for alternate-shaped glyph
substitution than it does for naturally-widened glyph substitution. This leads us to the
next step in this research project:

Within the Husayni font there is now a mapping between flat extending via tawil and
curved widening via alternate glyphs. Consider the following manually typed utf text
using the tawil character (U+0640):

\ARROW\

In flat-extended typography that comes out like this:

JEE

Husayni, through the optional Stylistic Alternates feature (salt] will map the flat tawil-
extended characters to curved widened characters. So with salt=yes selected in

ConTeXt we get

This opens up a way to connect a forthcoming solution to the flat tawil-extended
character method with the curved widened-glyph method. A future version of the
optimizer may be able to optimize the paragraph in terms of the tawil character and a
set of rules along the lines we discussed earlier. Then we can simply convert the result
to curves using the tawil character. At least this is one possibility.

In any case, the current paragraph optimizer, even in its experimental status at the
moment, represents one of the greatest and most important steps in the evolution of
digital Arabic-script typography. Its potential impact on for Arabic-script typesetting
is immense, and we excitedly look forward to its completion.

81

