drawing graphs with metapost > alan braslau

Drawing graphs with MetaPost

Alan Braslau

The graphical representation of data is discussed.

1. Preamble

WARNINC: The following is both fact and fiction. Fact, in that all of the graphics
presented here are produced using MetaPost. Fiction, in that it describes the use
of MetaPost version > 1.760, available via svn but not yet included in the ConTgXt
standalone distribution. Furthermore, the graph package described here will be
re-written, simplified, and extended, taking advantage of this new version of MetaPost.
This has yet to be done.

It may appear that we are going about this somewhat backwards, as the present article
is, infact, an attempt to document the new graph package. Itisindeed strange to begin
by writing the manual for a (partially] fictitious package before the macros have been
developed. But not really, for this should serve as a sort of specification, following which
the programming should be easy. As a bonus, the documentation will thus already
exist, rather than having to take on the task of its creation!

Finally, this article is intended to provoke comment, criticisms, and suggestions, for it
is a work in progress (and far from complete]. As the package is rewritten, things will
change. The reader is thus warned.

2. Introduction

This document describes a graph-drawing package that has been implemented as an
extension to the MetaPost graphics language. It is based upon an original package
written by John D. Hobby, also the creator of MetaPost. With the evolution to MetaPost
v2, calculations may now be performed in double precision floating-point arithmetic
at no performance cost due to progress in modern processors. This greatly simplifies
the manipulation of data and the implementation of the graph-drawing package.

The aim of the package is the drawing of clean, graphical representation of data. This
is made possible though its integration into a high-quality publishing system, leading
to a coherent use of style, typeface, and scale. The TgX text-processing system created
by Donald Knuth provides such a structure, and the MetaPost graphics language allows
a mathematically precise drawing of figures. The world of publishing has evolved from
the use of the PostScript printing language to the widespread use of the pdf Portable
Document Format as well as standardized markup languages such as xml. TgX has
likewise evolved to the direct production of pdf documents; its current ‘engine’ under
active development is luatex that includes extensions integrating the Lua scripting
language. The MetaPost graphics engine (mpost]), a stand-alone system producing
drawings encoded in the PostScript language or, alternately, Scalable Vector Graphics
(SVC) has been integrated into luatex through the mplib library. The one document
producing system integrating TeX layout and MetaPost graphics is ConTgXt, a coherent
and complete TgX-based package.

The present document describes the use of a new mpgraph2 macro package as
integrated in ConTgXt through luatex. As such, it will eventually become part of the

41

-

N

w

contextgroup > context meeting 2011

ConTeXt suite. The macros may also be used in standalone MetaPost producing figures
in encapsulated PostScript format that can then be integrated as external graphics in
other documents produced with LaTeX, for example.!

An important starting point is an introduction to the MetaPost graphics language.
This will not be covered here. A good introduction is the MetaPost manual (mp-
man. pdf) that is generally distributed with MetaPost; it is also available on CTAN. This
document should be considered ‘required reading’ before attempting to do anything
using MetaPost. Another good introduction is the MetaFun manual (metafun-s.pdf
and metafun-p.pdf for the screen and printed versions, respectively) which is also
available as a printed and bound volume. MetaFun integrates MetaPost into the core
of ConTeXt with specific extensions. Other good introductions and tutorials have been
written and many links can be found on http://www. tug.org/metapost.html.

The present documentation attempts to integrate notions and ideas (and even some
prose] as presented in the documentation to the original MetaPost graphics package

(mpgraph. pdf).

3. Choice of tools

The ConTgXt typesetting system uses luatex as a processing back-end. Graphical
representation of data can be implemented through ConTgXt macros, as lua functions,
as a MetaPost package, or through a combination of these. From a user’s point of view
(as opposed to a programmer’s point of view), it is preferable to 'see’ only one language,
thus either TeX (ConTgXt) or MetaPost (for graphics).2 The choice of a ConTeXt package
makes sense for standardized representations of data; simple pie charts or histograms
might be good examples® and several ‘'modules’ in this direction have been written.
However, few graphics can indeed be standardized, and the graphical user would want
to retain more control through the use of the entire MetaPost language. This is the
choice of the present implementation. Here, graphics are created in pure MetaPost (of
course, text strings can be formatted in TeX through the use of the textext () function
or the btex etex construction).

4. Fundamental notions

Graphics are drawn in MetaPost in a 2D Cartesian coordinate system describing a
region of the printed page or the display screen. Its basic unit is the PostScript point
(bp: 1/72 of an inch] and may be scaled to centimeters (cm), millimeters (mm), inches
(in), points (pt: 1/72.27 of an inch), picas (pc), ciceros (cc), Didot points (dd), or your
own scale (by convention, u), as needed. Data to be represented by a graph may be in

Another good graphics package for TeX is pgf/TikZ and the associated pgfplots package. It is distributed with
an excellent documentation and tutorial. ConTgXt has always been well supported, however the syntax and
philosophy of the package is best-tuned for LaTgX users.

Luaisaclean, interpreted programming language. Unfortunately, a non-programmer can be left completely
dismayed when faced with even a simple Lua routine.

A ConTeXt macro package for some standardized representations of data would almost certainly use
MetaPost as a graphical engine, but this would be hidden from the user.

42

drawing graphs with metapost > alan braslau

any other space or coordinate system, to be then transformed to the display space of
the MetaPost graphics.

Example 1.

We begin by reserving a canvas where the data is to be displayed. This is a rectangular
frame having two dimensions: a width and a height, and whose lower left-hand corner
is located at the origin of the MetaPost drawing space.
In ConTeXt, one might write:

1
\usemodule [graph] 57
\starttext 0.6
\startMPcode 04—
draw
begingraph(5cm,5cm) ; 027
gdraw (0,0)--(1,1) ; 0 N —
endgraph ; 0 02 04 06 08 1
\stopMPcode Figure 1: A first graph
\stoptext

Equivalently, one could write:

input graph ;

beginfig(1) ;

draw
begingraph(5cm,5cm) ;
gdraw (0,0)--(1,1) ;
endgraph ;

endfig ;

end

The use of standalone mpost produces an encapsulated PostScript file (eps). (In the
following, we will concentrate solely on MetaPost as integrated in the core of ConTgXt
through mplib, forgetting about standalone mpost.)

The result is shown Figure 1. Also drawn are the vectors (1cm,) in red and

in green (the corresponding MetaPost code is not shown here]. Note that their
origin is at the corner of the canvas, not the origin of the graph data. The object
drawn by the begingraph() statement is collected until ‘shipped-out’ following the
endgraph closing statement; it is a picture object that may be operated on, for example
shifted.

The scale transforming from data space to the drawing canvas is automatically
determined by the extrema of the data — lower left and upper right corners. The
drawing of several data sets (through several gdraw statements) would all contribute
to the automatic determination of the XY-scale. Conversely, the scale may be

43

contextgroup > context meeting 2011

draw begingraph(w,h) Begin a new graph with the frame width and
height given by numeric parameters w and h.

endgraph €nd a graph and return the resulting picture.

setcoords(x,y) Set up a new coordinate system as specified by
the labels xand y. Labelvalues are tlinear, log,
tln and tsqrt.

setrange((x1,yl), (x2,y2)) Set the lower and upper limits for the current
coordinate system. Each (x,y) can be a single pair
expression or two numeric or string expressions.

gcoord(x,y) Takes a pair of graph coordinates and returns a
pair of MetaPost coordinates.

Table 1: General graph command summary

explicitly set, through the use of the setrange() statement taking as parameters two
pairs of lower-left and upper-right coordinates.* Coordinates set explicitly through
setrange() are taken to be exact. The use of the anonymous variable whatever for
any value rounds the range up or down according to the extrema of the plotted data’®
Similarly, the transformation from data space to drawing space may be according
to some (non-linear] function. These may be set using the setcoords() statement,
taking two labels, one for the abscissa and a second for the ordinate. These labels
may be the keywords ‘linear’, 'log’,'In’ or ‘sqrt’;® a negative coordinate type [i.e.
-linear, -log) makes the axis run backwards, that is right to left or top to bottom.”
The function gcoord() returns a value in MetaPost drawing coordinates given a value
in graph-space coordinates.

A 3D representation of data will be discussed later. In this situation, the setrange(),
setcoords() and gcoord() commands would all require three parameters, of course.

5. Drawing axes

By default, a frame around the canvas is drawn, and the abscissa and ordinate are
marked and numbered on the bottom and on the left. This may be further controlled

* Given the flexibility of the MetaPost language, the parameters may also be written as a series of four
numbers, dropping the pair parenthesis, as in setrange(0,0,whatever,whatever), here fixing the data
origin to coincide with the drawing origin. However, the form maintaining the parenthesis may be clearer,
avoiding confusion as to the order of the parameters: setrange((0,0), (whatever,whatever)).

> A trick that can be used to set a range that will then be rounded is to ‘plot’ a path of extrema with a
nullpen, as in: setrange ((whatever,whatever), (whatever,whatever)) ; gdraw (0,0)--(pi,pi)
withpen nullpen ; Of course, subsequent data to be plotted must be contained within the set extrema;
otherwise, they will eventually set new extrema.

6 ‘linear’ and ‘log’ are currently the only possible choices for coordinate systems.

7 A further type might be the single label ‘polar’, interpreting the data as pairs of (radius,angle).

Lb

drawing graphs with metapost > alan braslau

using the gaxis() command.® It takes a mandatory suffix (1ft, rt, top, bot, x, y) and
a list of parameters. The default settings are given Table 2.

setcoords(linear,linear) ;

setrange((whatever,whatever), (whatever,whatever)) ;
gaxis.bot(line,tick.bot,numbers) ; gaxis.top(line) ;
gaxis.1ft(line,tick.1ft,numbers) ; gaxis.rt(line) ;

Table 2: Default settings
Example 2.

Drawing any one axis suppresses the automatic drawing of the other three axes, which
must then be explicitly drawn, if needed. Multiple calls may be made, changing pens,
colors, etc.

\startMPcode 1 ///
numeric w ; 0.8 ///
w := \the\marginwidth ; 0.6 ///
draw begingraph(w,w) ; 0.4 ///
gdraw (0,0)--(1,1) ; 0.2 ///
gaxis.bot(grid) dashed evenly withcolor 0
. 0 02 04 06 08 1
.85white;

. . Figure 2: Controlling axes
gaxis.bot(line,numbers) ; g g

gaxis.top(line) ;
gaxis.lft(grid) dashed evenly withcolor
.85white;
gaxis.lft(line,numbers) ;
gaxis.rt(line) ;
endgraph ;
\stopMPcode

Here, the dimensions of the graph are dependent on the layout. Because \textwidth
is stored in TegX dimension registers, it must be prefixed with \the expanding to a
dimension (in pt).

Example 3.

The graph axes can take alternate forms. Here, we draw just the bottom and left axis
along with a grid scale This example further demonstrates the drawing of a functional
form, here a simple sinusoid, as will be further explained later.

8 This is a new feature, replacing the autogrid(), grid() and frame commands.

45

contextgroup > context meeting 2011

\startMPcode

vardef FUNC(expr x) = sin(x*pi) enddef; 05+

draw begingraph(w,w) ;

setrange((0,whatever), (2,whatever)) ; 05 1 15

gdraw FUNC withcolor red ;

gaxis.x(arrow,numbers, major4,minor2,

skipfirst);

£

-0.5 T

Figure 3: XY axes

glabel.top(btex x etex, (2,0)) ;

gaxis.y(arrow,numbers, major4,minor2,
skipfirst, skiplast) ;

glabel.rt(btex y etex, (0,1)) ;

endgraph ;
\stopMPcode

Note that it is good practice in the graphical representation of functions to draw the
axes with arrows indicating the positive direction; Both axes should be labeled, as

should be the origin.

The labeling commands are closely related to a set of similarly named commands
in plain MetaPost; They can be followed by an option list of usual MetaPost drawing

options.

glabel.suffix(p, location)

gdotlabel.suffix(p, location)

gaxis.suffix(list)

If pis not a picture, it should be a string. Typeset
it using defaultfont, then place it near the given
location and an optional offset as specified by
the label suffix. The location can be x and y
coordinates, a pair giving x and y, a numeric value
giving a time on the last path drawn, or OUT to
label the outside of the graph frame.

This is like glabel () except it also puts a dot at
the location being labeled.

This draws a graph axis, where the mandatory
suffix is one of 1ft, rt, top, bot, x, y and deter-
mines which axis is to be drawn (x and y draw an
axis passing through the data origin).

list determines options and may contain:
line, arrow, numbers, skipfirst, skiplast,
skipzero, grid, tick.suffix, majorM, minorN
(setting the number M or N major or minor tick
intervals, otherwise automatically determined.
Major tick intervals are labeled, minor tick
intervals are hashed with a shorter line.)

Table 3: Axis and labeling command summary

46

drawing graphs with metapost > alan braslau

6. Drawing data

But we have yet to draw any real data! Before looking into importing data, we will first
cheat and simulate data through calculation.

Example &.

We define a path p through a Gaussian function and a modified path q with added noise,
simulating data.

\startMPcode
path p ; p := for i=1 upto 49:
if i>1 . -- fi
hide(x := i/25-1 ;) (x,1000xexp(-4x*x*1log(2)))
endfor ;
path g ; g := for i=0 upto length p:
if i>0 : -- fi

(point i of p
shifted (@,normaldeviate*sqrt(ypart (point i of p))))
endfor ;
\stopMPcode

The Gaussian path is drawn in figure 4 as a continuous line and

the ‘data’ are plotted using a pre-defined symbol. 10%&%%
FAAN
\startMPcode S vl &
draw begingraph(w,4w/3) ; s \
setcoords(linear,log) ; T <§
setrange((-2,.01), (+2,2000)) ; o o1 o%
gaxis.x(arrow,numbers, skiplast) ; L . e
glabel.bot(btex x etex, (xmax,ymin)) ; 2 a1 o 1 *
gaxis.y(arrow,numbers,skipfirst) ; Figure &4: A Gaussian
distribution

glabel.rt(btex y etex, (@,ymax)) ;
gdraw p withcolor red ;
gdraw g plot plotsymbol(1,blue,.4) ;
endgraph ;

\stopMPcode

6.1 Plotting symbols

The function plotsymbol () takes three parameters: a number specifying the shape,
a color, and a fill color [or number, interpreted as a shade of the drawing color]. The
number specifying the shape is O for a dot, 1 for a circle, 2 for a vertical bar, 3 for a
triangle, 4 for a square, 5 for a pentagon, ... 9 for a nonagon. Variants are also defined:
adding 10, 20, or 30 to the index give rotated or modified symbols. Not all possibilities

47

[te}

contextgroup > context meeting 2011

are defined—-only those that make sense. The symbols are illustrated in figure 5.
The size of the symbol is given by the numerical parameter sym_size; By default, it is
defined as half of the font size of the defaultfont, but may be freely redefined.

The symbol shapes are stored in an array of closed paths: sym_.

When plotting data sets, it is useful to choose colors from a palette of easily identified
standards. We thus define an array of colors co and its corresponding array of string
names cn with indices running from 0 to 9, according to the rainbow of color codes
(used to identify electrical resistances):

O:black 1:brown 2:red 6:blue 9:white

100% =
90% |
80% |
70% |
60% |

50% |

|
|
|
|

4

40%
30%
20%
10%

0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Figure 5: Plot symbols — plotsymbol (index,red,shade).
The abscissa is the symbol index and the ordinate is the fill shading.

6.2 Plotting mathematical functions

In the previous example, a path of points following a Gaussian function was calculated
and manipulated. Earlier, a sinusoidal function was drawn. The command gdraw can
draw a path, data taken from a file (see below], or a functional form returning an
ordinate given an abscissa.’ In this case, the range of the plot must be determined,
either through the previous drawing of a path of data or else through an explicit use
of setrange(). The density of points is determined by the parameter ncalc, spaced
evenly in drawing space, thus not necessarily linearly in data space.

As this feature has not yet been programmed, the implementation may well be
different. For example, it may prove advantageous to provide a command calcu-
late_path() returning a path to be drawn given a function FUNC(), a more sophisti-
cated implementation of the basic algorithm:

for i=1 upto ncalc :

if i>1 . -- fi

hide (x := i/(ncalc-1)*[xmin,xmax] ;) (x,FUNC(x))
endfor

Plotting functions is an important feature of a graph package. Furthermore, calculating
functions from a set of data needs to be implemented. Examples that come to mind
that can be exactly calculated are minimum, maximum, mean, variance, polynomial,
etc.. More sophisticated would be non-linear least-squares optimization or maximum
entropy determination. Other standard statistical treatments could also be envisioned.

Alternately, the drawing of a multi-valued function may be better handled by a function returning an abscissa
given an ordinate. The author accepts that this point needs to be further developed.

48

drawing graphs with metapost > alan braslau

6.3 Reading data files

Real data can be collected from a variety of sources and will be stored in a file or a
collection of files in some format. The simplest such format is, commonly, columns
of data, typically numbers represented as character digits or even strings. Columns
may be delimited by ‘white space’ (a series of spaces and tabulations], by a single
tabulation character, or by a separation character such as a comma or a semicolon
(this is often called CSV). Alternately, data may be stored in some ‘binary’ format or in
a more complicated hierarchical format (one example is ‘HDF5').

Data stored in columns can be easily read line by line (a ‘record’) and parsed into
columns (‘fields’). The function gdata(filename,variable,commands) opens a data
file ‘filename’, processing each record, setting the line number to the variable i,
assigning fields as strings to variablel, variable?, ... up to the number of fields per line
(assigned to the variable j), terminating the ‘array’ with the null string; for each record
the commands are executed, allowing one to process the data as desired.®®

Example 5.

Consider the following data:

month 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

1 0 462 285 370 877 667 523 554 436 845
2 0 476 177 523 446 538 425 712 747 760
3 0 579 120 935 509 455 421 1106 1052 1079
4 2 355 113 649 885 450 1076 1024 846 558
5 0 293 216 442 767 336 456 961 746 736
6 (% 187 349 499 719 35 723 623 729 835
7 0 180 242 635 774 431 880 518 628 700
8 0 293 437 516 762 745 683 575 846 629
9 0 626 262 543 539 461 890 562 790 489
10 171 328 299 406 506 332 746 715 945 486
11 277 142 459 771 347 496 805 999 940 0

12 276 252 365 905 403 766 576 525 782 0

total 726 4173 3324 7194 7534 6033 8204 8874 9487 7117

This data was taken from the ConTeXt mailing list, showing the number of messages
exchanged each month. The data file ‘context.dat’is read and the data placed in the
paths po—p10.

\startMPcode

path p[] ;

numeric year([] ;
gdata("context.dat”,s,

10 This approach is similar to that implemented in the interpreted program awk. Indeed, it could interesting,
following awk, to provide some pattern-matching mechanism.

49

contextgroup > context meeting 2011

for j=0 upto 9 :
if s1="month" :
year[j] := scantokens(s[j+2]) ;
elseif s1="total” :

augment.pl1@(year[j], scantokens(s[j+21)) ;

else :

augment.p[jJ](scantokens(s1), scantokens(s[j+2]1)) ;

fi
endfor
)
\stopMPcode

The standard MetaPost function scantokens() converts a string into its numerical
value. The function augment.variable(coordinates) adds to the path variable the

pair given by coordinates. The paths may then be plotted.

First, we illustrate the growth in postings, year by year.

\startMPcode

draw begingraph(w,w) ;
glabel.bot(btex year etex, OUT) ;
glabel.lft(btex postings per year etex

rotated 90, OUT) ;

gdraw pl10 ;

endgraph ;

\stopMPcode

10000

8000 —

6000 —

4000 —

2000 —

postings per year

I l I
2002 2004 2006 2008 2010
year

Figure 6: ConTgXt mailing list
postings by year

We observe that the number of postings has grown by about a factor of 5, approaching
around 10000 postings per year (at the present date, the year 2011 is only 10/12
complete). Note that this level corresponds to about 26 postings per day, on average.

\startMPcode
draw begingraph(w,w) ;
glabel.bot (btex month etex, OUT) ;
glabel.lft(btex postings per month etex
rotated 90, OUT) ;
for j=1 upto 9 :
gdraw p[j]
withcolor co[j-11 ;
endfor
endgraph ;
\stopMPcode

50

1000 — /\\\\ A
e %
§ 80— 1/ \ \
= 600 /) 4 5 /
& LN AV,
o 400— 7/ O
2
2 200 v
o
% 0—

month
Figure 7: ConTgXt mailing list
postings by month, 2003—2011
(black—gray)

drawing graphs with metapost > alan braslau

Notice the use of the color array co as defined in the previous section. No clear pattern
can be distinguished in the postings by month.
The postings were further analyzed, producing the

following cumulative data:

Sun
Mon
Tue
Wed
Thu
Fri
Sat

6432
9811
10496
10724
10377
9291
5535

5. 1000 —

3

> 800 —

=]

& 600 —

g

g 400 —

a

>

20200 . o -

E =} b LT B2 oo o=

i R
12 3 4 5 6 7
day of the week

Figure 8: ConTgXt mailing list
average yearly postings by day
of the week

showing that the midweek traffic is about double that on
weekends.

\startMPcode

draw
begingraph(w,w) ;

setrange ((whatever,@), (whatever,whatever)) ;

path p ;

gdata("context2.dat”,s, augment.p(i,scantokens(s2)/10) ;

glabel (textext(s1) rotated 90, (i,100)) ;) ;

glabel.bot(btex day of the week etex, OUT) ;

glabel.lft(btex Yearly postings by day etex rotated 9@, OUT) ;

gdraw p ;
endgraph ;
\stopMPcode

Example 6.

Data showing the daily electricity consumption in France over the last sixteen years is
publicly available. The values, in MWh, are too large to be represented using standard
MetaPost scaled-point arithmetic; We plot this data here rescaled in GWh, somewhat
easier to comprehend as well (knowing that the total theoretical electrical power
production capacity is about 105 GW — nuclear, hydroelectric, oil, coal, natural gas,
solar, wind, tidal, ... — or about 2500 GWh per day).

\startMPcode

draw
begingraph(8cm,6cm) ;
setcoords(linear,linear) ;
setrange(1995.5,0,2012,2500) ;

51

contextgroup > context meeting 2011

2000 —

1500 —

1000 —

500 —

Electricity consumption (GWh)

| | l | l | l |
01996 1998 2000 2002 2004 2006 2008 2010 2012
year

Figure 9: Electricity consumption in France (data RTE)

glabel.bot(btex year etex, OUT) ;
glabel.1ft(btex Electricity consumption (GWh) etex rotated 90,

ouT) ;

gaxis.bot(grid) dashed evenly withcolor .85white ;
gaxis.rt (grid) dashed evenly withcolor .85white ;
gaxis.bot(line,tick.top,numbers) ;

gaxis.top(line) ;

gaxis.1lft(line,tick.rt, numbers) ;

gaxis.rt(line) ;

path p ;

for year = 1996 upto 2011

days

gdata("Historique_consommation_JOUR_" & decimal year & ".csv",

:= if ((year mod 4) = 0) :
366
else :
365
fi ;

s, augment.p(year+(i-1)/days, scantokens(s2)/1000) ;) ;

endfor

gdraw p ;
endgraph ;
\stopMPcode

This shows a steady increase (about 30%) in the electricity consumption over the past

16 years.

The annual variation can be compared year by year. As there is also a strong weekly
variation, the data needs to be offset by the starting day of the week (1st of January):

52

drawing graphs with metapost > alan braslau

\startMPcode
draw
begingraph(8cm,6cm) ;
setcoords(linear,linear) ;
setrange(9,0,372,2500) ;
glabel.bot(btex day etex, OUT) ;
glabel.1ft(btex Electricity consumption (GWh) etex rotated 90,
ouT) ;
gaxis.bot(grid) dashed evenly withcolor .85white ;
gaxis.rt (grid) dashed evenly withcolor .85white ;
gaxis.bot(line,tick.top,numbers) ;
gaxis.top(line) ;
gaxis.1lft(line,tick.rt, numbers) ;
gaxis.rt(line) ;
path p[] ;
for year = 1996 upto 2011 :
day := year mod 7 ;
if ((year mod 4) = 1) : day :=day + 1 ; fi
gdata("Historique_consommation_JOUR_"& decimal year & ".csv",s,
augment.plyear-1996](day+i, scantokens(s2)/1000) ;) ;
gdraw pLyear-1996] withcolor co[(year mod 8)+1] ;
endfor
endgraph ;
\stopMPcode

See figure 10 on the next page.

This programming trick could be simplified through the use of proper date parsing
functions that need to be introduced to the graphing package, as time is an important
variable in much data.

The preceding data might be better viewed in 3D. Figure 11 (next page]) was indeed
drawn using MetaPost, but not using graph macros, nor using one of several 3D
macro packages that were discussed at the ConTgXt user’'s meeting. Rather, here |
cheated and used my old-time favorite graphics program called cplot (written by
Gerry Swislow).

The 3D representation of data in MetaPost can be handled using different approaches:
one is the use of arrays of ‘colors’ — triplets; a second is the use of three coupled
arrays of numbers (using the suffix mechanism). As MetaPost has no true array
mechanism (array elements are simply allocated variables sharing a common name
and an appropriate syntax to handle numerical labels), these two approaches might
prove to be inefficient for a large set of data. A third approach, the possibility to
define paths of triplets, would require MetaPost development. Although this would
be conceptually the most satisfying, in practice it may or may not be possible. The
handling of 3D data [and drawing 3D objects, in general] remains an open question.*

1 For example, should formatted text be projected, as is shown figure 117

53

contextgroup > context meeting 2011

N
(@3
o
(&

—_
U1
o
o

—_
o
o
(&)

Electricity consumption (GWh)

500 |~

0 | | |

Figure 11: Yearly variation in the electricity consumption (3D)

54

drawing graphs with metapost > alan braslau

All of the drawing commands can be followed by an option list. In addition to the
usual MetaPost drawing options, the list can contain a plot picture clause to plot a
specified picture at each data point. The drawing commands are closely related to a
set of similarly named commands in plain MetaPost.

gdraw p Draw path p, or if p is a string, read coordinate
pairs from file p and draw a polygonal line through
them.

gfill p Fill cyclic path p or read coordinates from the file
named by string p and fill the resulting polygonal
outline.

plotsymbol(shape, draw, fill) Returns a plot symbol as a picture to be drawn.
Takes a shape given as a number related to a
polygonal dimension (shown figure 5) or as an
arbitrary closed path, that is drawn using the
color draw and filled using the color fill. If the fill
color is a number, it is taken as a shade between
the background and the draw color: fill[back-
ground, draw].

gdata(f, variable, commands) Read the file named by string f and execute com-
mands for each input line using the variable as an
array to store data fields.

augment . variable (coordinates) Append coordinates to the path stored in variable.

scantokens string A MetaPost primitive. Converts a string to a token
or token sequence. Provides string to numeric
conversion, etc.

Table 4: Data handling command summary

6.4 Error bars

It is common to indicate the uncertainty in recorded data through the drawing of error
bars for the abscissa, the ordinate, or both; Sometimes, an error ‘ellipse’ is drawn. One
can easily draw error bars using MetaPost commands within the gdata() function.
However, a standard mechanism needs to be developed, for example, given a path of
data and an associated ‘path’ of error values (either pairs of x, y errors, y-, y+ errors,
etc.). This need will also be addressed.

7. Conclusions

The MetaPost graph package is to be re-written taking advantage of the floating-point
arithmetic implemented in MetaPost v2. This will allow it to be simplified and
expanded. The present article is the beginning of a reflection on a proposal for such
a task. Itis currently necessarily incomplete. To that end, comments and suggestions
are most welcome.

55

