
contextgroup > context meeting 2016

80

Abstracts without papers

Introducing Continuous Integration (CI)
to TeX binaries
Mojca Miklavec
TeX Live binaries are being built once per year for
about 20 different platforms by a number of volun-
teers and never get updated during the year. This
is a good compromise between users’ demand for
reasonably new binaries, stability and the burden
on volunteer builders and packagers.
ConTeXt community on the other hand strongly
depends on the availability of the latest binaries
of LuaTeX at any given time. There are also oc-
casional requests for the latest binaries of XeTeX
when new features get implemented.
We have recently set up a build infrastructure that
can automatically build TeX binaries after every
commit for a number of platforms, send emails
when builds break, show reports and make the
binaries available to users.
This approach puts a lot of burden off the shoul-
ders of people previously responsible for building
TeX binaries while at the same it time gives us
freedom to run the builds a lot more frequently,
getting binaries to usersmuch faster and providing
earlier feedback about problems to developers.

Updates and TODOs “Cewe/XML to PDF”
photobook conversion
Harald König
my TODOs for the photobooks:
• JPEG tooling (EXIF orientation/rotation)
• hue/staturatoin changes on JPEGs (back-

ground images)

Vexillography in ConTeXt
Marek Treťák, Tomáš Hála
Vexillography is the part of vexillology that deals
with drawing flags and banners. The common way
how to use flags in a document is to download
ready files, sometimes in vector format, some-
times as bitmaps, but there is no tool available for
simple drawing in ConTeXt.
This is the reason why the ConTeXt module for
drawing facilitation has been prepared. The mod-

ule provides not only the basic set of flags and
banners of European countries but brings the tool
for defining own flags or banners which will be
shown using some examples.
The talk will also cover basics of terminology and
the most frequently used patterns of flags.

Rules
Taco Hoekwater and Hans Hagen
WhenMojca asked about adding rules to the end of
lines, Taco offered to provide some insight in tricks
to achieve this using Lua. This is also an anchor for
explaining how the linebreak algorithm works and
what eventually comes out.
As a follow up Hans implemented a mechanism
in the core (in fact it was mostly an extension of
an existing mechanism) and used the opportunity
to extend some related mechanisms as well. Of
course we also kick in some MP code (for Alan).

Setups
Wolfgang Schuster (and Hans Hagen)
The user interface is described in xml files but the
actual descriptions lagged behind development.
Wolfgang spent a considerable amount of time to
describe all commands in detail and we updated
the descriptive format in the process. The render-
ing was partly redone, as was the help system and
scripts that use this information.

Scripts
Hans Hagen (optional)
Most users will only run the mtxrun and context
scripts (and maybe the font one) but there are few
more. I will give an update in what there is and
what they are used for: how they help me and how
they can help you.

Workflows
Hans Hagen with everyone
What problems do we face when we integrate
ConTeXt in a workflow and how can we deal with
them. (Follow up on previous topic.) What more is
needed.

80 80

80 80



abstracts

81

Rendering math
Hans Hagen
Now that the OpenType specification explicitly
mentionsmath the renderer can be improved. One
of the problems has always been that the fuzzy-
ness of the specification resulted in all OpenType
math fonts doing things slightly different. There is
no way an engine can deal with this so either the
fonts need to be improved (what happens indeed)
or we need ways to manipulate them. Some ex-
amples will be given.

Columnsets redone
Hans Hagen
From MkII we inherited two column handlers:
a mechanism that could mix single and multi
colummn mode, and a more rigid columnsets
model. Both are still present, but replaced by
mixed columns and pagegrids. Eventually the old
models will be removed from the core (and be-
come modules) as the new ones can perform bet-
ter (and can still be extended). I will discuss some
of the problems we face and solutions provided.

Combining the power
Hans Hagen
The TeX, MetaPost and Lua languages each have
their charm and strength and in ConTeXt we bring
them together. In this presentation I’ll give an
example (or maybe a few more) about where this
integration happens and what makes me decide
which language to use for what aspect of a solu-
tion. (Stepcharts)

Piece of Snake
Taco Hoekwater
How to implement snake-justification in ConTeXt,

or: how to automatically fill in the ragged borders
of non-justified paragraph text using embellish-
ments. See http ://xkcd .com/1676/ for the
inspiration.

A short history of punctuation
Taco Hoekwater
Punctuation is "the use of spacing, conventional
signs, and certain typographical devices as aids
to the understanding and correct reading, both
silently and aloud, of handwritten and printed
texts." (Encyclopaedia Brittanica).
Punctuation evolved over time, just like everything
else related to writing. This talk gives a short
overview of the development process until now.

CAKE: Source overview
Taco Hoekwater
ConTeXt Advanced Knowledge Essentials: Know-
ing where the various functionalities of ConTeXt
are found in the source tree is helpful in (almost
a prerequisite to) getting better acquainted with
advanced functionality. This is an overview of what
is where in the ConTeXt source after the rewrite for
MkIV.

CAKE: The TUC file
Taco Hoekwater
ConTeXt Advanced Knowledge Essentials: The
temporary file ConTeXt uses to maintain state be-
tween consecutive runs of the typesetting engine
contains lots of important information, but it is
not easy to interpret by a novice. We will have
a look at all the various objects contained in the
temporary file, and how it can help to deepen your
understanding of ConTeXt.

81 81

81 81



contextgroup > context meeting 2016

82

ConTEXt Source Code Consistency Checker
Adam Hanuš, Tomáš Hála∗

∗ 1. Department of Informatics, Faculty of Business and Economics, Mendel University,
Brno, Czech Republic; 2. KONVOJ, spol. s r. o. (publishing house), Brno, Czech Republic;
Email addresses: thala@mendelu.cz, konvoj@konvoj.cz

The compilation of a source code written in ConTEXt is understandably more time
demanding. Therefore, each syntactic mistake unnecessarily delays the user on his way
to the final version of his document. For improving the user’s comfort, the consistency
checker has been implemented. The checker makes it possible to detect the following
syntactic offences even before the compilation starts:

(a) unbalanced braces and plain commands for opening and closing of groups;
(b) unbalanced start/stop command;
(c) check of the proper number of parameters;
(d) warning in front of undesirable spaces in key/values definitions.

The set of “pair” commands can be extended by the user editing the configuration file.
Additionally, the check of included files and unbalanced parenthesis and brackets can
be activated by options.
The consistency checker of ConTEXt source codes has been implemented in language
Lua as a standalone programme. The use of the list of commands taken directly
from ConTEXt system sources for substituting a part of configuration file is under
development.

ConTEXt, syntax, consistency check, Lua

82 82

82 82



abstracts > Dominik Makeš, Tomáš Hála

83

TypoChecker: Checking and Correcting Selected Typographic
Phenomena
Dominik Makeš, Tomáš Hála∗

∗ 1. Department of Informatics, Faculty of Business and Economics, Mendel University,
Brno, Czech Republic; 2. KONVOJ, spol. s r. o. (publishing house), Brno, Czech Republic;
Email addresses: thala@mendelu.cz, konvoj@konvoj.cz

For simplifying proofreaders’, typesetters’ and editors’ work, the programme for check-
ing selected typographic phenomena has been prepared.
It is not always possible to decide unambiguously where exactly the author made a
mistake. Therefore, the checker does not operate automatically; rather, the process has
been divided into two stages. First, mistakes are only detected and thewell arranged log
file with detail description of mistakes is prepared for the user. The log file also contains
proposals how to fix the detected mistakes. Then, on user’s demand, all mistakes are
corrected in mass. In this way the user can, by editing the file with the list of errors
(especially by erasing records of points which should not be changed), influence the
subsequent correcting process.
The presented version stems from Czech and Slovak typesetting rules. Additional rules
reflecting typesetting rules in other languages, will be incorporated in the future.
The checker has been implemented in language Lua as a standalone programme.

ConTEXt, typochecking, detection of mistakes,
correction of mistakes, Czech, Slovak, Lua

83 83

83 83



contextgroup > context meeting 2016

84

Implementation of Tokeniser Based on Lua Regular Expressions
and Its Use for Highlighting the Syntax
Tomáš Hála
1. Department of Informatics, Faculty of Business and Economics, Mendel University,
Brno, Czech Republic; 2. KONVOJ, spol. s r. o. (publishing house), Brno, Czech Republic;
Email addresses: thala@mendelu.cz, konvoj@konvoj.cz

For some simple cases it is not necessary to write a new or complex tokeniser.
Highlighting the syntax very often belongs to these simple cases.
Therefore, the module LexAn has been prepared. The module can recognise tokens
which are described by regular expressions. The module has been implemented in
language Lua, so we talk about reduced regular expressions. Tokens are marked with
the corresponding keys, and these can be used for subsequent operations.
The presented solution can be used not only for highlighting the lexical elements by
pre-defined set of regular expressions which is the usual situation, but, first of all, makes
it possibe to define own rules (own sets of lexical symbols). Then, one can mark any
part according to his/her needs, which could be used with a great advantage, e.g., for
teaching.
The predefined sets of regular expressions describe programming languages Pascal,
TEX, lua, perl and PHP. Development of other sets is in progress.

Supported by CSTUG.

ConTEXt, tokeniser, regular patterns, highlighted
syntax, Lua

84 84

84 84


