
diagrams using metapost > alan braslau

47

Diagrams using MetaPost
Alan Braslau

The graphical representation of textual diagrams is an extremely useful tool in the
communication of idea. These are composed of graphical objects and blocks of text or
the combination of both, i.e. a decorated label or text block, in some spatial relation to
one another.1 A simple example might be:

A B
Figure 1:

One often speaks of placing text with their accompanying decorations on nodes, points
of intersection or branching or else points on a regular lattice. The nodes of the above
diagram are the two endpoints of a straight segment.
MetaPost is an inherently vectorial graphical language using TEX to typeset text;
the MetaPost language is integrated natively as MPlib in ConTEXt. This presents
advantages over the use of an external graphical objects in providing a great coherence
of style along with great flexibility without bloat. MetaPost has further advantages
over many other graphical subsystems, namely high precision, high quality and the
possibility to solve equations. This last point is little used but should not be overlooked.
It is quite natural in MetaPost to locate these text nodes along a path or on differing
paths. This is a much more powerful concept than locating nodes at some pair of
coordinates, on a square or rectangular lattice, for example, as in a table. These paths
may be in three dimensions (or more); of course the printed page will only be some
projection onto two dimensions. Nor must the nodes be located on the points defining
a path: theymay have as index any time along the path p ranging from the first defining
point (𝑡 = 0) up to the last point of a path (𝑡 ≥ 𝚕𝚎𝚗𝚐𝚝𝚑(𝚙)).2
For a given path p, nodes are defined (implicitly) as picture elements: picture

p.pic[] ; This is a pseudo-array where the square brackets indicates a set of
numerical tokens, as in p.pic[0] but also p.pic0. This number need not be an
integer, and p.pic[.5] or p.pic.5 (not to be confused with p.pic5) are also valid.
These picture elements are taken to be located relative to the path p, with the index
t corresponding to a time along the path, as in draw p.pic[t] shifted point t

of p ; (although one would not necessarily draw them in this way). This convention
allows the ‘nodes’ to be oriented and offset with respect to the path in an arbitrary
fashion.
Note that a path can be defined and then nodes placed relative to this path, or else
the path may be simply declared yet remain undefined, to be determined later, after
the nodes are declared. Yet another possibility allows for the path to be adjusted as
needed, as a function of whatever nodes are to be occupied.
This might sound a bit arbitrary, so let’s begin with the illustration of a typical natural
transformation of mathematics. A simple path is a square:

1 The spatial relation may be a representation of a temporal relationship.
2 The time of a cyclic path is taken modulo the length of the path.

47 47

47 47



contextgroup > context meeting 2016

48

path p ;

p := fullsquare scaled 3cm ;

draw p ;

Figure 2: A simple path.

and the points defining the path are drawn in red.3 Although it is trivial, this example
helps to introduce the MetaPost syntax. Given the path p, we can define and draw
nodes as well as connections between them:

𝐺(𝑋) 𝐺(𝑌)

𝐹(𝑌)𝐹(𝑋)

𝐺(𝑓 )

𝐹(𝑓 )

𝜂𝑌𝜂𝑋

draw node(p,0,"\node{$G(X)$}") ;

draw node(p,1,"\node{$G(Y)$}") ;

draw node(p,2,"\node{$F(Y)$}") ;

draw node(p,3,"\node{$F(X)$}") ;

drawarrow

fromto.bot(0,p,0,p,1,"\node{$G(f)$}");

drawarrow

fromto.top(0,p,3,p,2,"\node{$F(f)$}");

drawarrow

fromto.rt (0,p,2,p,1,"\node{$η_Y$}");

drawarrow

fromto.lft(0,p,3,p,0,"\node{$η_X$}");

Figure 3: A natural transformation.

One should not confuse the MetaPost function node() with the ConTEXt command
\node{}, defined as:

\defineframed

[node]

[frame=off,

offset=1pt]

that places the text within a ConTEXt frame (with the frame border turned-off). The
MetaPost function node() sets and returns a picture element associated with a point
on a path given by its first argument and indexed by its second argument. The third
argument here is a string that gets typeset by TEX.

3
for i=0 upto length p:

draw point i of p withpen pencircle scaled 5pt withcolor red ;

endfor

48 48

48 48



diagrams using metapost > alan braslau

49

The MetaPost function fromto() returns a path segment going from a point on a first
path to a point on another path. Here, only one path, p, is used. The first argument
can be used as a displacement to skew the path away from a straight line. The last
argument is a string to be typeset and placed midpoint of the segment. The suffix
appended to the function name gives an offset around this halfway point. This follows
standard MetaPost convention.
In a slightly more complicated example, that of a catalytic process given in a Krebs
(1946) representation, where the input is indicated coming into the cycle from the
center of a circle and the products of the cycle are spun-off from the outside of the
circle, we start by defining a circular path where each point corresponds to a step in
the cyclic process. Our example will use six steps. We will want to define a second
circular path with the same number of points at the interior of this first circle for the
input and a third circular path at the exterior for the output. Thus,

save p ; path p[] ; picture p[]pic[] ;

p1 := (for i=0 step 60 until 300: dir(90-i).. endfor cycle)

scaled 2.5cm ;

p0 := p1 scaled .5 ;

p2 := p1 scaled 1.5 ;

12C

13N

13C

14N

15O

15N

a

b

cd

e

f

1H

1H
1H

1H

4He

𝛾

e+ + 𝜈e

𝛾

𝛾

e+ + 𝜈e

Figure 4: The Bethe cycle for the energy production in stars (1939) in a Krebs
(1946) representation of a catylitic process.

Note that here, contrary to the previous example, we need to explicitly declare the
picture elements p[]pic[] that will hold the nodes for this set of paths as theMetaPost
syntax treats p.pic[] differently.4 Nodes are drawn on each of these three circles and
then arrows are used to connect these various nodes, either on the same path or else
between paths. The MetaPost function fromto() is used to give a segment pointing

4 Furthermore, picture p1.pic[] ; is an invalid syntax.

49 49

49 49



contextgroup > context meeting 2016

50

between nodes. As stated above, this segment can be a straight line or else a path that
can be bowed-away from this straight line by a transverse displacement given by the
function’s first argument (given in units of the straight segment length). When both
modes are located on a single, defined path, this segment can be made to lie on this
path, such as one of the circular paths defined above. This is obtained using any non-
numeric value (such as true) in place of the first argument. Of course, this cannot work
if the two nodes are not located on the same path. The circular arc segments labeled
a–f are drawn on figure 4 using

drawarrow fromto.urt (true,p1,0,p1,1,"\nodeGreen{a}") ;

for example, where \nodeGreen is a frame that inherits from \node changing style and
color:

\defineframed

[nodeGreen]

[node]

[foregroundcolor=darkgreen,

foregroundstyle=italic]

The bowed-arrows feeding into the cyclic process and leading out to the products, thus
between different paths, from the path p0 to the path p1 and from the path p1 to the
path p2, respectively, are drawn using the deviations +3/10 and -1/10 (to and from
half-integer indices, thus mid-step, on path p1):

drawarrow fromto(3/10,p0,0,p1,0.5) withcolor .6white ;

and

drawarrow fromto(-1/10,p1,0.5,p2,1) withcolor .6white ;

for example.
The tree diagram of figure 5 is drawn using four paths, each one defining a row or
generation in the branching. The definition of the spacing of nodes was crafted by hand
and is somewhat arbitrary: 3.8, 1.7, and 1 for the first, second and third generations.

DNA interactions with surfaces

repulsive: attractive: adsorption

confinement depletion,
macromolecular

crowding

chemisorption physisorption

immobilized mobile

Figure 5: A tree diagram

50 50

50 50



diagrams using metapost > alan braslau

51

One can do better by allowing MetaPost to solve equations and to determine this
spacing automatically. This will be illustrated by a very simple example where nodes
are first placed on a declared but undefined path.

save p ; path p ;

The save p ; assures that the path is undefined. This path will later get defined based
on the contents of the nodes and a desired relative placement.

picture X ;

X := node(p,0,"\node{first}") ;

…

X := node(p,3,"\node{fourth}") ;

Because the function node() returns a picture element, it gets assigned to the picture
variable X (to be discarded) rather than drawn. This avoids a MetaPost syntax error.
After defining all nodes, one can determine their optimal positioning and only then
draw actually them. We start by defining a variable to hold the position and then
placing the first node at an origin:

pair p.pos[] ;

p.pos0 = origin ;

As the path p is undefined, so are the positions p.pos, and one can write a set of
equations for them.5 Let’s say that we want the second node to be located somewhere
to the upper-right of this first node. We write the equation

p.pos1 - p.pos0 - boundingpoint.urt(p.pic0)

+ boundingpoint.llft(p.pic1) = whatever*dir(45) ;

using the unknown whatever in the upper-right direction. The function
boundingpoint() returns a point on the bounding box of the node in a direction
indicated through a standard MetaPost suffix; here we take the upper-right corner of
the first node and the lower-left corner of the second node. We now want the third
node to be located to the left of this second node:

p.pos2 - p.pos1 - boundingpoint.lft(p.pic1)

+ boundingpoint.rt (p.pic2) = whatever*left ;

and the fourth node directly below this third node:

p.pos3 = p.pos2 + boundingpoint.bot(p.pic2)

- boundingpoint.top(p.pic3) + 2ahlength*down ;

The set of equations is to be completed by adding that this fourth node is also to be
located directly to the left of the very first node:

p.pos0 = p.pos3 + boundingpoint.rt(p.pic3)

- boundingpoint.lft(p.pic0) + 2ahlength*right ;

5 This first equation (p.pos0 = origin ;) could equally have been an assignment (:=).

51 51

51 51



contextgroup > context meeting 2016

52

The positions of the nodes being fully determined, the path itself can now be assigned:

p := (for i=0 upto 3: p.pos[i] -- endfor cycle) ;

and the diagram drawn, resulting in figure 6.

for i=0 upto 3:

draw node(p,i) ;

drawarrow fromto(0,p,i,p,i+1 mod 3) ;

endfor

first

secondthird

fourth
Figure 6:

Additional nodes can be added to this diagram along with appropriate relational
equations, keeping in mind that the equations must be solvable, of course. This last
point is the one challenge that most users might face.
Another such example is the construction of a simple tree of descendance or family
tree. There are many ways to draw such a tree, in figure 7 we will show only three
generations.

mother father

child1 spouse

grandchild1
spouse

grandchild2
spouse

grandchild3
spouse

grandchild4
spouse

child2 spouse

grandchild2
spouse

grandchild3
spouse

grandchild4
spouse

Figure 7: A tree of descendance

We leave it as an exercise to the reader to come-up with the equations used to
determine this tree with the hint that the only unknown (whatever) used in this
example is the spread towards the second generation.
The following example, shown in figure 8 and drawn here using the present MetaPost
node macros, is inspired from the TikZ CD (commutative diagrams) package.6 The
nodes are again given relative positions rather than being placed on a predefined path.
The arrow labeled ‘(𝑥, 𝑦)’ is drawn dashed withdots and illustrates how the line gets
broken, here crossingunder its centered label. Figure 9 is another “real-life” example,
also inspired by tikz-cd.

6 The TikZ-CD package uses a totally different approach: the diagram is defined and laid-out as a table with

decorations (arrows) running between cells.

52 52

52 52



diagrams using metapost > alan braslau

53

𝑋 ×𝑍 𝑌 𝑝 𝑋

𝑓

𝑍𝑔𝑌

𝑞

𝑇 𝑥

𝑦

(𝑥, 𝑦)

Figure 8:

𝜋1(𝑈1 ∩ 𝑈2) 𝜋1(𝑈1) ∗𝜋1(𝑈1∩𝑈2) 𝜋1(𝑈2) 𝜋1(𝑋)

𝜋1(𝑈2)

𝜋1(𝑈1)

𝑖2

𝑖1

𝑗1

𝑗2

≃

Figure 9:

Consider the following code:

A B

C D
Figure 10:

save p ; path p ;

p := fullsquare scaled 2cm ;

draw node(p,3,"\node{A}") ;

draw node(p,2,"\node{B}") ;

draw node(p,0,"\node{C}") ;

draw node(p,1,"\node{D}") ;

drawarrow fromto(0,p,2,p,0) ;

drawarrow fromto(0,p,3,p,1) crossingunder fromto(0,p,2,p,0) ;

illustrating the MetaFun operator crossingunder that draws a path with segments
cut-out surrounding the intersection(s) with a second path. (This second fromto()

could have been saved in a path variable in this example rather than being called
twice.) Another illustration of the crossingunder operator in use is shown in figure 11.
Because the diagrams are all defined and drawn inMetaPost, one can easily extend the
simple mode drawing with any sort of graphical decoration using all the power of the
MetaPost language.

53 53

53 53



contextgroup > context meeting 2016

54

Figure 11:

References
Bethe, H. A. (1939). Energy Production in Stars. Phys. Rev., 55, 103–103. doi:10.1103

/PhysRev.55.103; Bethe, H. A. (1939). Energy Production in Stars. Phys. Rev.,
55, 434–456. doi:10.1103/PhysRev.55.434 (p. 49)

Krebs, H. A. (1946). Cyclic processes in living matter. Enzymologia, 12, 88–100.
(p. 49)

54 54

54 54


