
contextgroup > context meeting 2015

52

pdf Bookmarks
Taco Hoekwater

1. Introduction
“A pdf document may optionally display a document

outline on the screen, allowing the user to navi-

gate interactively from one part of the document to

another. The outline consists of a tree-structured

hierarchy of outline items (sometimes called book-

marks), which serve as a visual table of contents

to display the document’s structure to the user.

The user can interactively open and close individual

items by clicking them with the mouse.”

pdf reference manual

Not all pdf readers support document outlines
(or bookmarks, as ConTEXt calls them), but quite
a few do. Typically, the bookmarks open in a
separate pane, and can be used to jump quickly
to a particular section of the document. ConTEXt
internally represents pdf bookmarks as a lua
table with the following relevant entries:

title <string> the name of this book-
mark, to be displayed in
the outline pane

name <string> the name of the struc-
ture section used to cre-
ate this bookmark

level <number> the nesting level of this
bookmark

realpage <number> the page this bookmark
links to

opened <boolean> whether this bookmark
should initially be displayed
opened or closed

reference <hash> the reference that this
bookmark links to

the are some other entries, but these are the
important ones.

2. Use in ConTEXt
To use bookmarks, some interaction features
have to be turned on, if your document does not
so already:

\setupinteraction

[state=start]

\setupinteractionscreen

[option=bookmark]

\placebookmarks

[chapter,section]

[chapter]

Assuming the PDF reader supports bookmarks,
this will open the document with the bookmarks
pane open and containing bookmarks for chap-
ters and sections. The second argument to
\placebookmarks ensures that the bookmark
entries will all be visible on the initial document
opening (read as: and open up the chapter
bookmarks).
Note that the unnumbered headings (\title,
\subject etc.) do not create bookmarks, even
when listed in \placebookmarks. In order
to create the bookmarks, you need to add
force=yes, for example like this:

\placebookmarks

[title, subject]

[force=yes]

With a long heading in a huge font, you might
want to add linebreaks by hand. No problem,
just use \\. The bookmark code ignores \\, so

52 52

52 52



pdf bookmarks > taco hoekwater

53

the bookmark itself won’t have a linebreak. For
example:

\startchapter[title=Long\\ title]

hello

\stopchapter

ConTEXt attempts to replace commands inside
bookmarks with an acceptable string. How-
ever, the result is not always optimal. To tweak
ConTEXts behaviour, add specific commands to
\simplifiedcommands.
For example, to replace the \CONTEXT logo
(which would normally become CONTEXT) with
a camel-cased version, use the following:

\appendtoks

\def\CONTEXT{ConTeXt}

\to \simplifiedcommands

A more general method, also usable for the
above problem, is to use the bookmark option
to specify the bookmark text explicitly. For
example:

\startchapter[title=A long chapter\\

about splines,

bookmark=Splines]

hello

\stopchapter

If you do not like seeing the structure numbering
in the bookmarks, you can add number=no, like
this:

\placebookmarks

[chapter,section]

[chapter]

[number=no]

When including pages from an external PDF
document, sometimes it is useful to import the
bookmarks from that PDF file as well. Doing this
is very simple:

\externalfigure

[externalpdf]

[page=1,interaction=all]

In real life, you probably want to include more
pages, but just a single page interaction=all
is enough for ConTEXt to read all of the external
bookmarks and store them in a Lua table.
ConTEXt will then automatically merge the
bookmarks for the relevant pages below the
current section level and patch the page num-
bers. It also creates a completely new bookmark
as root entry for the external bookmarks. This
new bookmark has the filename of the external
figure as its title, and it points to the first
included page.

3. Advanced processing

If you are unhapppy with ConTEXt’s way of
adding bookmark items, you can intercept the
bookmark creation process, using some Lua
code. You are allowed to hook into the normal
ConTEXt processing at two places: just after
ConTEXt has collected all the raw bookmarks
from your document into a table, and again after
all ConTEXt’s automatic processing is complete.
The first entry point is useful for example to
get the external bookmarks and store them in a
safe spot, so you can do specialized processing
later on.

53 53

53 53



contextgroup > context meeting 2015

54

Here is a bit of code:

\startluacode

userdata.bookmarks = {}

local xtr = structures.bookmarks.extras

local premerge = function(levels)

for _,v in ipairs(xtr.get()) do

userdata.bookmarks[v.name]

= v.levels

end

xtr.reset()

return levels

end

structures.bookmarks.installhandler

("check before","before", premerge)

\stopluacode

The levels argument to the function is the cur-
rent set of bookmarks (remember, bookmarks
are an array, there is no nesting). But in this
example we are ignoring that argument.
The function premerge stores all the found ex-
ternal bookmarks (even those for pages you do
not include) in your own userdata.bookmarks
table. The command xtr.get) returns a table
with name, levels pairs. The v.name entry is the
name of the external file, and v.levels contains
all the bookmarks from that file.
The xtr.reset() call makes sure that ConTEXt
does not process the external bookmarks itself.
It will still create the extra bookmark with the
external file’s title, which is useful if you want to
merge bookmarks in manually.

The second entry point comes after all of
ConTEXt’s processing:

\startluacode

local function merge (levels)

-- table.print(levels)

local refs

local collect = {}

for _,v in ipairs (levels) do

collect[#collect+1] = v

refs = userdata.bookmarks[v.title]

if refs and #refs>0 then

for _, i in ipairs (refs) do

i.level = i.level + v.level+1

i.section = v.section

collect[#collect+1] = i

end

end

end

return collect

end

structures.bookmarks.installhandler

("merge","after", merge)

\stopluacode

In this second part, you can alter levels in any
way that you see fit. You could even delete some
of the ‘regular’ bookmarks, or alter their content.
In this case, I am inserting all of the external
bookmarks, even the ones for pages that are not
included.
To see what all is in levels, it may be useful to
uncomment the table.print() line.
After this "after" step, there is nothing more
that ConTEXt does with the bookmarks except
write them out to the PDF document.

54 54

54 54


