
mlbibtex and context: face-to-face > jean-michel hufflen

27

MLBIBTEX & ConTEXt: Face-to-Face
Jean-Michel Hufflen

We summarize what the MLBIBTEX bibliography processor can provide
to the ConTEXt typesetting system, even if MLBIBTEX has been initially
designed to work with LATEX. We review the successive steps of tasks
performed by MLBIBTEX, and show how some significant differences
between LATEX and ConTEXt can be managed. In addition we show how
some of these tasks may be interfaced by means of external functions
called by ConTEXt. We also mention some original features of MLBIBTEX,
including those introduced by the new version, still in development. Last
but not least, MLBIBTEX can allow ConTEXt users to take advantage of
constructs introduced by the biblatex package.

Introduction
The BIBTEX word processor [1] was initially designed to work in conjunction with the
LATEX word processor [2]. Later, an attempt to use BIBTEX for generating ‘Refer-
ences’ sections suitable for ConTEXt documents was Taco Hoekwater’s bib module
[3]. However, this BIBTEX program is ageing: in particular, its bibliography styles (.bst
files) are written in an old-fashioned language using postfixed notations and based
on handling a stack [4]. Besides, new requirements have appeared over the past
decade — e.g., multilinguism, character encodings — beyond the capabilities of this
venerable program. Some possible replacements have already been proposed for
LATEX documents’ bibliographies: an emerging alternative is the biblatex package
[5] in tandem with the biber bibliography processor [6], the latter being written using
Perl1. Let us notice that this bibliography processor is unusable within ConTEXt because
it only generates bibliographies for LATEX’s biblatex package. Another proposal is
MLBIBTEX2: first it was designed to focus on multilingual features3, then it has evolved
towards a ‘better BIBTEX’ in the sense that a developer of bibliography styles is given
more services closer to ‘actual’ programming. For example, BIBTEX cannot perform
numerical sorts, it only provides lexicographic ones4, whereas MLBIBTEX can deal with
both, according to the type of processed data. Practising MLBIBTEX’s implementation
language — Scheme — is not needed for end-users, but allows advanced developers
to put ambitious features into action. In addition, MLBIBTEX is able to generate
bibliographies according to formats other than LATEX’s, in particular, XML5 dialects [8].
The present article aims to summarize what our MLBIBTEX program — as an adaptable
modern bibliography processor — has already provided to the ConTEXt typesetting

1 Practical Extraction and Report Language.
2 MultiLingual BIBTEX.
3 MLBIBTEX’s history is summarised in [7].
4 The same for biber.
5 eXtensible Markup Language.

27 27

27 27

contextgroup > context meeting 2015

28

system and can provide to it in the future. A short description of the mlbibcontext
program — derived from MLBIBTEX’s kernel6 — has already been given in [9]. Here we
go thoroughly into more technical details; in particular, we incorporate some material
shown at previous ConTEXt meetings, these talks have not been complemented yet by
written articles:

• Bibliography Tools and ConTEXt/LuaTEX (Bassenge, September 2011),

• All Roads Lead to mlbibcontext (Brejlov, September 2013),

• Calling MLBIBTEX’s Functions (Nasbinals, September 2015).

The first two talks referred to MLBIBTEX’s first version distributed publicly (1.3). Since
Spring 2015, we started a new version (1.4) — introduced in [7] — and some new
features have been presented at the last ConTEXt meeting, in September 2015; in
particular, this new version is Unicode-compliant. What is shown in the present article
is based on the new version, presently in test. Concerning ConTEXt’s version, we use
MkIV, allowing operations more related to ‘actual’ programming to be written using
the Lua language [10].
In the first section, we explain why a more strict analysis of string values associated
with BIBTEX fields, within bibliography database (.bib) files, is needed in order to derive
bibliographies for ConTEXt documents. In § 1.1, we will refer to some notions and
commands related to LATEX, but only some basic knowledge of this word processor is
needed. After a short introduction to ConTEXt’s bib module, we explain how MLBIBTEX
addresses this problem and enumerate the basic cases we can process. Then Section 2.
shows how the successive tasks MLBIBTEX performs are launched and organised. We
will see how intermediate results may be managed, possibly by means of methods
written using the Lua programming language and interfacing Scheme functions. Some
points given in this section are very technical, in particular, the use of Scheme
definitions, but they can easily be skipped if you are not interested in implementation
issues. Section 3. summarises the features of MLBIBTEX, some being to be developed
for ConTEXt. Section 4. explains how MLBIBTEX’s executable programs are updated w.r.t.
the new version 1.4. Finally, the bibliography of the present article has been generated
by our executable program mlbibcontext.

1. Bibliographies for ConTEXt

1.1 Using .bib files

As mentioned before, BIBTEX difficultly meets some new requirements: these points
are explained in [11]. Hereafter, we only focus on using BIBTEX to generate bibliogra-
phies suitable for ConTEXt documents rather than LATEX ones. Let us look at Figure 1. We
recognise the .bib format and its entry types, such as @BOOK. Each bibliographical entry
is specified by values associated with fields, some being required (e.g., TITLE), some

6 Throughout this article, the ‘MLBIBTEX’ logo is used for a large set including this program’s kernel and all

the derived executable programs, the typewriter font for an executable program belonging to this set. So,

‘mlbibtex’ (resp. ‘mlbibcontext’) is for the executable program derived from MLBIBTEX and able to generate

bibliographies for LATEX (resp. ConTEXt) source files.

28 28

28 28

mlbibtex and context: face-to-face > jean-michel hufflen

29

optional (e.g., SERIES); the fields unrecognised by a bibliography style are ignored. In
addition Figure 1’s examples use some syntactic extensions provided by MLBIBTEX:

• the LANGUAGE field is for the language of the current entry7, the conventions
are given in [12];

• the first entry’s AUTHOR field uses keywords — ‘abbr =>’, ‘first =>’, … —
for a person name’s recognised parts8 and a new connector — ‘with’, anal-
ogous to ‘and’ — for collaborators rather than co-authors: see [13] for more
details; let us mention that mixed notation — using both standard notation for
names and keywords — is allowed: let us consider Figure 1, we use the ‘classi-
cal’ BIBTEX notation for the first and last names of the first entry’s first author,
and the ‘abbr =>’ gives a nonstandard abbreviation of the first name9;

• the second entry uses multilingual annotations [14] within the ADDRESS field;
let us assume that this entry is cited throughout a document written in English
or French, and information should be put using the document’s language as
far as possible, so ‘Munich’ will be put if the ADDRESS field is processed by the
bibliography style used.

By the way, let us notice that the MONTH information is put within a bibliographical
reference, within .bbl files, if the bibliography style handles this information, but is not
used by BIBTEX to sort entries.
If such entries are processed by ‘old’ BIBTEX, these syntactic extensions cause warnings
or result in strange-looking references. In fact, the two ways to increase BIBTEX entries’
expressive power slowly are the addition of new fields10 and the markup of values
associated with fields by means of LATEX commands. There is no problem if source texts
for LATEX are derived, provided that these commands are defined. As a consequence,
we may need a more precise analysis of such values if other formats — e.g., simple
text, HTML11, or XML — are targeted. Since ConTEXt and LATEX are both built out of
TEX, defining some LATEX commands in ConTEXt solves some cases, but not all. Let
us consider Figure 1’s examples again. The first entry’s NOTE field includes a markup
to emphasise the ‘Oregon’ word, but the LATEX \emph command is unknown within

7 W.r.t. MLBIBTEX’s terminology, .bib files contain bibliographical entries, whereas bibliographical references

— which are inserted into a source file for a typesetting system, such as LATEX or ConTEXt — result from a

bibliography processor’s task.
8 The ‘=>’ sign belongs to such a keyword; more precisely, such a keyword consists of a key identifier, followed

by ‘=>'’. Stricto sensu, these keywords are not needed in this example, a workaround would allow the first

name to be abbreviated correctly; as shown in [13], such workarounds related to person names and based

on dummy LATEX or ConTEXt commands may be quite simple or more complicated.
9 By default, BIBTEX and MLBIBTEX abbreviate a first name by retaining only its first letter, followed by a period.

In some cases, this modus operandi is incorrect, but in fact, typography books do not agree about abbre-

viating first names. Besides, such abbreviations are language-dependent, or even context-dependent. As

an example of this last feature, ‘Clive Eric Cussler’ is usually abbreviated into ‘Cl. Cussler’ whereas the well-

known abbreviated form for ‘Clive Staples Lewis’ is ‘C. S. Lewis’. At least, our ‘abbr =>’ keyword allows us to

process such cases.
10 So does the biblatex package: many new fields are added to basic ones. Let us recall that fields unrecog-

nised by bibliography styles are ignored by BIBTEX.
11 HyperText Markup Language.

29 29

29 29

contextgroup > context meeting 2015

30

@BOOK{cussler-du-brul2010,

AUTHOR = {Clive Eric Cussler,

abbr => Cl. with

first => Jack B.,

last => Du Brul},

TITLE = {The Silent Sea},

SERIES = {\emph{Oregon} Files

Adventures},

PUBLISHER = {Penguin Books},

YEAR = 2010,

MONTH = mar,

LANGUAGE = english}

@BOOK{wienfort2008,

AUTHOR = {Monika Wienfort},

TITLE = {Geschichte Preu{\ss}ens},

SERIES = {Wissen},

VOLUME = 2456,

PUBLISHER = {Verlag C.~H. Beck},

ADDRESS = {[M\"{u}nchen] ! german

[Munich] ! english

[Munich] ! french},

YEAR = 2008,

MONTH = aug,

LANGUAGE = german}

Figure 1: Example of an enriched .bib file.

ConTEXt. In this case, the best solution could be to use the basic construct ‘{\em …}’
of LATEX’s first version, known by both LATEX and ConTEXt. However, the emph command,
introduced by LATEX 2𝜀, is more recommended for LATEX users, and we can find many
.bib files where this emph command is used12. In addition, other cases are more subtle:
if some words are to be put using both italicised characters and bold face, there is
no common construct: ‘\textit{\textbf{…}}’ or ‘\textbf{\textit{…}}] in LATEX vs
‘{\bi …}’ in ConTEXt. Finally, the same name may denote different commands in LATEX
and ConTEXt: as an example, the second entry’s title uses the German ‘ß’ character,
accessed by the LATEX command \ss, whereas this command causes a switch towards
a sans-serif font in ConTEXt. The right ConTEXt command to get ‘ß’ is \SS; in LATEX, \SS
causes the case of ‘ß’ to be raised and gets the ‘SS’ sequence13. It can be noticed that
this problem should disappear with the use of Unicode-compliant .bib files; however

12 … and, more generally, a huge number of .bib files including LATEX commands on the Web.
13 See [2] for more details about the commands \ss and \SS in LATEX.

30 30

30 30

mlbibtex and context: face-to-face > jean-michel hufflen

31

\usemodule[bib] % No longer needed,

% this module is

% now preloaded.

\setupbibtex[database=example]

\setuppublications

[criterium=cite,numbering=yes]

\starttext

Some words about \cite[cussler-du-brul2010].

\placepublications

\stoptext

Figure 2: Using ConTEXt’s bib module.

the ‘ß’ letter is quite frequent in German, and this \ss command would be still used in
.bib files already developed.

1.2 Using the bib module

For a long time, the only way to use a bibliography processor for ConTEXt documents’
bibliographies was the bib module, as mentioned in the introduction. A very simple
example is given in Figure 2, the example.bib file used in the \setupbibtex command’s
database option includes entries pictured in Figure 1. In addition to standard fields of
BIBTEX’s entries, the bibliography style associated with this module (the cont-no.bst
file) can process more entry types and recognises more fields — e.g., ABSTRACT and
ANNOTATE — some pairs being quite redundant — e.g., KEYWORD and KEYWORDS, NOTE
and NOTES. This module’s behaviour is close to the biblatex package’s in the sense
that a structure is passed to LATEX — bibliographical references are just marked up with
ConTEXt commands — when .bib files are read; formatting these references is deferred
until the \placepublications command is used to put the document’s bibliography.
A difference, in comparison with both standard styles and biblatex: all the entries of
.bib files are included into the .bbl file of references14, only the \setuppublications
command decides to select all or part of these references, according to the criterium
option’s value (all or cite). About this last point, our mlbibcontext program behaves
like BIBTEX in the sense that only cited entries are extracted from .bib files. Concerning
fields, some of those introduced by the bib module are recognised, they are listed in
Table 1. In § 3.1, we will see that the ‘recognised’’ word means something more precise
for MLBIBTEX. The non-standard entry types @PATENT and @PERIODICAL are processed
by mlbibcontext, too.

14 Let us remark that if an entry inside a .bib file is ill-formed, the whole process crashes. BIBTEX and MLBIBTEX

just skip entries not retained, so some syntactic errors in such entries may be irrelevant.

31 31

31 31

contextgroup > context meeting 2015

32

ABSTRACT DAYFILED ISBN15 MONTHFILED

ANNOTE DOI16 ISSN17 SIZE

ASSIGNEE EPRINT KEYWORDS URL

DAY NAMES LASTCHECKED YEARFILED

Table 1: Additional fields of the bib module recognised
by the mlbibcontext program.

As an additional bibliography module of ConTEXt, bibltx can be loaded in order to
define some LATEX command often used throughout .bib files. However, this is only
some partial solution, and the modules bib and bibltx just aim to take advantage of
.bib files, when there was a unique parser for such databases: BIBTEX’s. In particular,
these two modules and the associated .bst file cannot reach features beyond BIBTEX’s
ability.

1.3 MLBIBTEX's internal format

BIBTEX allows additional definitions of LATEX commands used throughout a .bib file to
be exported, by means of a @PREAMBLE directive, all the directives of the .bib files used
are concatenated and put at the beginning of the .bbl file containing corresponding
references:

@PREAMBLE{{\def\anewcommand{…}…}}
Like BIBTEX, MLBIBTEX reads the @PREAMBLE directive when it has to generate outputs
for LATEX. An analogous directive, @CONTEXTPREAMBLE, being the same syntax, has been
introduced for ConTEXt’s definitions:

@CONTEXTPREAMBLE{{\def\LaTeXe{…}…}}
In reality, this @CONTEXTPREAMBLE directive is of interest in such a case — that is, a
‘specialised’ command of LATEX18 — but useless in practice for predefined font switch
commands such as \emph, \textit, etc. When MLBIBTEX parses all or any part of a .bib
file, the result — structured as far as possible — may be viewed as an XML tree. For
example, processing Figure 1 results in the two XML trees pictured in Figure 3. Basic
LATEX commands such as \emph, \textit, or \textbf are implemented by elements,
we can observe that about the first entry’s SERIES field. A more nested example can
be given by parsing the value \textit{\textbf{\LaTeX}}, which would result19 in:

<emph emf="no" iff="yes" bff="yes">

<LaTeX-command command="\LaTeX"

verbatim="LaTeX"/>

</emph>

15 International Standard Book Number.
16 Digital Object Identifier.
17 International Standard Serial Number.
18 The \LaTeXe command produces the ‘LATEX 2𝜀’ logo.
19 There are many attributes of our emph element, but we do not make precise those that are bound to default

values. W.r.t. MLBIBTEX’s terminology, an attribute whose values can be yes or no is so-called a flag and its

name is suffixed by ‘f’. All the attributes of our emph element follow this convention.

32 32

32 32

mlbibtex and context: face-to-face > jean-michel hufflen

33

\emph \textbf \textrm \texttt

\LaTeX \textit \textsc

\TeX \textnormal \textsf

Table 2: Font switching LATEX commands recog-
nised by MLBIBTEX’s parser.

\# # \ss ß

\% % \textbar |

\& & \textexclamdown ¡

\$ $ \textquestiondown ¿

\copyright © \textregistered ®

\P ¶ !` ¡

\pounds £ ?` ¿

\S §

Table 3: LATEX’s commands replaced by single
characters.

We can also see how a LATEX command known by MLBIBTEX’s parser is processed: the
verbatim attribute is to be used for formats other than TEX-related ones, that is, simple
texts, or HTML documents, or XML ones. Commands unknown by MLBIBTEX are left
verbatim within the result. The math environments ‘$…$’ and ‘\[…\]’ are implemented
by the LaTeX-math-mode element and differentiated by the displayf attribute. Let
us go back to the previous example, MLBIBTEX is able to generate these two possible
outputs, according to the target typesetting system:

LATEX ⟸ \textit{\textbf{\LaTeX }}
ConTEXt ⟸ {\bi \LaTeX }

The LATEX commands resulting in XML elements when a text is processed by MLBIBTEX’s
parser are listed in Table 2. Likewise, commands for accents and diacritical marks are
replaced by their results if it belongs to the Unicode character set, so ‘Preu{\ss}ens’
is replaced by ‘Preußens’ in Figure 3. Table 3 lists LATEX commands MLBIBTEX’s parser
replaces by their effect. Since most of these commands are unknown for ConTEXt end
users, we make precise corresponding characters. Besides, we can see that our parser
not only gets values associated with an entry’s successive fields, but also structures
them as far as possible. An accurate example is given by person names, for fields such
as AUTHOR or EDITOR.

1.4 A bridge towards the biblatex package

MLBIBTEX is also able to recognise some fields introduced by the biblatex package.
If this package is used, the fields YEAR and MONTH are superseded by the DATE field. A
simple date has the format, closer to the ISO20 format:

simple-date ::= yyyy[-mm[-dd]]

20 International Standardisation Organisation.

33 33

33 33

contextgroup > context meeting 2015

34

<book id="cussler-du-brul2010" language="english">

<author>

<name>

<personname>

<first abbrev="Cl.">Clive Eric</first>

<last>Cussler</last>

</personname>

</name>

<with/>

<name>

<personname>

<first>Jack B.</first>

<last>Du Brul</last>

</personname>

</name>

</author>

<title>The Silent Sea</title>

<publisher>Penguin Books</publisher>

<series><emph>Oregon</emph>

Files Adventures</series>

<year>2010</year>

<month><mar/></month>

</book>

Figure 3: XML trees resulting from Figure 1’s examples.

where y, m, d are digits and square brackets are put for optional parts21. The value
associated with this DATE field may be a simple date, or a date range (<simple-
date>/<simple-date>); a simple date ending with a ‘/’ character (<simple-date>/)
means an open-ended date range. If ranges are used within .bib files whilst MLBIBTEX
applies a ‘classical’ bibliography style, only the first date is considered. Other additional
fields used by biblatex are recognised by our mlbibcontext program: some are
known by ConTEXt’s bib module and have already been listed in Table 1, let us add
the GENDER field, already introduced by the jurabib package.

To end up with this § 1., the mlbibcontext program allows ConTEXt users to deal
with .bib files, and most new fields introduced by recent evolution of bibliography
processing. The only limitation is that LATEX commands should be used within .bib files,
if additional markup is needed.

21 In fact, MLBIBTEX deals with an extension of this syntax where negative years are allowed. More details are

given in § 3.1.

34 34

34 34

mlbibtex and context: face-to-face > jean-michel hufflen

35

<book id="wienfort2008" language="german">

<author>

<name>

<personname>

<first>Monika</first>

<last>Wienfort</last>

</personname>

</name>

</author>

<title>Geschichte Preußens</title>

<publisher>

Verlag C. H. Beck

</publisher>

<volume>2456</volume>

<series>Wissen</series>

<address>

<group language="german">

München

</group>

<group language="english">

Munich

</group>

<group language="french">

Munich

</group>

</address>

<year>2008</year>

<month><aug/></month>

</book>

Figure 4: XML trees resulting from Figure 1’s examples.

2. How MLBIBTEX works

Broadly speaking, the successive tasks performed by a bibliography processor are
chained as follows:

• decide which bibliography style is to be applied, either because it is explic-
itly specified in the document’s source file, or because a general structure is
passed to the typesetting system, as done by the bib module (cf. § 1.2) and in
LATEX with the packages jurabib [2] or biblatex;

• collect citation keys, or decide that every entry must be retained;

• parse .bib files;

35 35

35 35

contextgroup > context meeting 2015

36

.a
u

x
fil

e

.t
ex

m
as

te
r

fil
e’

s
pr

ea
m

bl
e

.b
ib

fil
es

File
names

ad
di

ti
on

al
re

so
u

rc
es

(S
)X

M
L

tr
ee

O R

.b
st

fil
es

.n
bs

t
fil

e

di
re

ct
st

yl
e

st
ru

ct
u

re
d

te
xt

O R

LA T
EX

’s
ou

tp
u

t
s.

C
on

T E
X

t’
s

ou
tp

u
t

s.

X
M

L’
s

ou
tp

u
t

s.

pu
re

te
xt

’s
ou

tp
u

t
s.

fin
al

ou
tp

u
t

En
co

di
n

g
to

be
u

se
d

Figure 5: MLBIBTEX’s flow.

36 36

36 36

mlbibtex and context: face-to-face > jean-michel hufflen

37

• sort entries, if need be;

• arrange each entry to the corresponding reference.

In comparison with BIBTEX’s process — mainly controlled by .bst files — MLBIBTEX’s
is more complicated since many additional aspects are managed. In this section, we
detail this modus operandi from a general point of view, because we would like to
emphasise that our support for ConTEXt is easily integrated into this general framework.
In this section’s end, we will get back to the features that allow MLBIBTEX to work
for generating bibliographies for ConTEXt documents. Since ConTEXt developers might
be interested in performing separate parts of MLBIBTEX’s behaviour, we sometimes
make precise the Scheme functions to be used. As mentioned above, they could be
invoked by means of external calls performed by Lua functions. Let us go back to this
complete modus operandi, pictured in Figure 5. As mentioned in § 1.3, parsing entries
results in a tree that can be viewed as an XML tree. In fact, we use the SXML22 format:
roughly speaking, XML elements are implemented by Scheme linear lists, textual data
by strings, and attributes of an elements by association lists. If we glance at Figure 5,
we get such a tree and apply a bibliography style. Since the result is not a string, but
a list of strings and elements to be concatenated — examples of such elements (emph,
LaTeX-command, LaTeX-math-mode) are given in § 1.3 — we view this result as a kind
of structured text23. The last step may be viewed as serialisation process according to
output conventions, the final output being written onto an output port.

2.1 Getting an (s)xml tree

Like BIBTEX, MLBIBTEX reads an .aux file in order to get citation keys, and .bib file names.
Let us recall that ConTEXt only builds .aux files when the bib module is used, since only
BIBTEX deals with such files when ConTEXt is in action. MLBIBTEX can perform these two
actions directly, by means of the following Scheme expressions — filename-list is
a list24 of .bib file names, key a citation key, and key-list a list of citation keys; file
names and citation keys are given as strings — :

• ((bibtexkey-alist-pv 'add-keys) key-list) causes citation keys to be
arranged according to the reverse order of the first occurrences of each key,
without duplicates; in addition, this expression creates placeholders for these
entries25; in addition, notice that:

• ((bibtexkey-alist-pv 'add-key) key) can be used to insert keys one
by one;

• if you would like each item of .bib files to be retained26, just run:
((bibtexkey-alist-pv 'extend))

these last three expressions return #t, the ‘true’ value in Scheme;

22 Scheme implementation of xml.
23 This notion may be related to mixed contents for XML elements.
24 That is, a linear list of Scheme: ‘(… …)’.
25 This is the basic form. If namespaces are used, in order to solve name conflicts among different items be-

longing to different .bib files [15], another expression must be used.
26 As done in LATEX by the \nocite{*} command.

37 37

37 37

contextgroup > context meeting 2015

38

• ((bibliographyfile-list-pv 'adjoin-all) filename-list) memoizes
the pathnames of .bib files, provided that no pathname is repeated; this ex-
pression must be performed once27; the result is #t if this operation succeeds,
#f — the ‘false’ value in Scheme — otherwise.

When MLBIBTEX is used ‘classically’, such an .aux file also gives the bibliography style to
be applied. Once information is extracted from this .aux file, .bib files are parsed in turn,
and resources associated with citation keys are updated. Let us give some additional
details about this process. The list of .bib file names is the result of:

((bibliographyfile-list-pv 'get))

Let filename be a pathname, given as a string, and filename-list a list of strings,
parsing a .bib file is launched by:

(s-parse-bib-file filename)

In fact, such an expression is mainly used for debug purposes. To look for all the
members of filename-list using the kpathsea library [16], and parse them in turn,
run:

(s-parse-kpbib-filename-list filename-list)

These last two expressions return #t (resp. #f) in case of success (resp. failure). When
all the .bib files are parsed, the following expression checks if every citation key has
been associated with a resource:

(get-sxml-mlbiblio-tree)

and results in #f if no entry has been found, otherwise the result is the SXML tree for all
the entries built, unsorted, that is, according to the order of first citations throughout
the document.

The box labelled by ‘Additional resources’ in Figure 5 encompasses the information
not included into .aux files. An example of such an additional resource is given
by preambles — @PREAMBLE (resp. @CONTEXTPREAMBLE) for bibliographies for LATEX
(resp. ConTEXt) documents — as mentioned in § 1.3. Other information is exploited at
subsequent steps and may induce the parsing of a LATEX document’s preamble. For
example, the babel package allows LATEX to be conformant to typographic rules of
many languages other than English [2]. But when this package is loaded, end-users
must put all the languages they may use, so some languages are available throughout
a document, some not28. MLBIBTEX looks for this information within a .tex source’s
preamble, and also gets the main language29, whereas this information has to be
provided when the mlbibcontext program is called. Likewise, the encoding to be
used for a .bbl file — UTF-8 for ConTEXt’s recent versions — is given by the inputenc
package’s option, this information being included into a LATEX document’s preamble.

27 This expression is suitable when .bib file names are specified within a unique order, by the *bibliography

command in LATEX or the \setupbibtex command in ConTEXt. If .bib file names may be entered one by one,

as done by the biblatex package’s *addbibresource command, another function is to be used.
28 This feature does not exist within ConTEXt: all the languages, denoted by ISO codes, are available by means

of the ‘\language[…]’ construct.
29 When the babel package is used, the main language is this package’s last option.

38 38

38 38

mlbibtex and context: face-to-face > jean-michel hufflen

39

(define next-value

(let ((counter 0)) ; May be viewed as a private

; attribute.

(lambda () ; Method incrementing the counter.

(let ((result counter))

(set! counter (+ counter 1))

result))))

Figure 6: Lexical closure in Scheme.

2.2 Applying a bibliography style

W.r.t. MLBIBTEX’s terminology, a bibliography style is a function applied to an SXML tree
of bibliographical entries and resulting in a structured text, this notion being introduced
at this section’s beginning. Let us recall that MLBIBTEX is written using a functional
programming language, so such a function can be the result of some computation.
For example, when MLBIBTEX works in compatibility mode, a .bst file is ‘compiled’ into
Scheme expressions, and a Scheme function launches the process. Other bibliography
styles taking advantage of MLBIBTEX’s multilingual features are written in nbst30, a
variant of XSLT31, also interpreted by Scheme functions. In both cases, these programs
build source files for LATEX and implement ‘particular’ styles, that is, alpha, plain, etc.
For sake of efficiency, a different technique is used when resulting .bbl files are marked
up with LATEX or ConTEXt commands: a direct style, wholly written in Scheme, is applied.
Let us remark that applying small changes into a .bst or .nbst styles is easy — which
is an advantage of these languages — but such a feature is irrelevant about a direct
style since customisation is performed by redefining commands used for markup.
MLBIBTEX’s direct styles include mlbiblatex, for .bbl files suitable for the biblatex
package and mlbibcontext, for bibliographies of ConTEXt documents.

An important point: if you try to process bibliographical entries in turn, each being
processed independently of others, by means of external calls, such a process may
result in strange-looking references. In fact, when an entry is processed, information
about the following entries may be updated. In other words, the following entries, not
processed yet, should never be dropped out. This feature is related to lexical closures
in Scheme. Let us consider Figure 6: the first call to the next-value function returns 0,
then each call returns the next integer. More precisely, the function returns the current
value of the local variable counter and updates this variable for the next call. The
counter variable’s value is bound to the definition of the next-value function, so a
change of this variable impacts the function’s next calls.
The same technique is used for bibliographical entries when the mlbibcontext
program is applied: each entry (𝐸0, 𝐸1, …, 𝐸𝑛) has its own additional environment
(𝑐0, 𝑐1, …, 𝑐𝑛), as pictured in Figure 7. Entries before the current one are already
processed and are no longer searched, no longer updated. On the contrary, the

30 New Bibliography STyles.
31 eXtensible Stylesheet Language Transformations, the language of transformations used for XML texts.

39 39

39 39

contextgroup > context meeting 2015

40

enviroments associated with entries after the current one may be searched and
updated.
More precisely, if you are familiar with CPS32, here is the call of the function processing
an entry when the mlbibcontext program is applied:

(mlbibcontext-process-entry-cps
entry-sxml-subtree current-s
current-s-length current-index output-p
k3)

where entry-sxml-subtree is the current entry’s SXML tree, current-s is the longest
string used to label a reference and current-s-length its length, index is the current
entry’s index in the complete list, output-p is the output port where results will be
finally written. At the end, the k3 continuation — a three-argument function — will
be applied to the longest string and its length, possibly updated after processing the
current entry. The third value is a thunk33 memoizing the result of processing the
current entry. This k3 continuation expresses how processing next entries is launched
after updating them. When all the bibliographical entries are processed, successive
thunks are applied, in turn.

2.3 Getting a final text

As mentioned above, the last step starts from a structured text, that is, a list whose
members are strings or SXML elements. These elements are flattened into strings, and
all the strings are concatenated. Our Scheme function performing this task is:

(o-process-wrt-context-mode str-text)

where str-text is a structured text, the result is a string.

2.4 Dealing with other formats

Let us recall that our internal format may be viewed as an XML document. Since ConTEXt
can deal with such syntax, saving an SXML tree of bibliographical entries into a file using
XML syntax may be of interest:

(sxmlh-get-xml-syntax sxml-tree filename
encoding)

where sxml-tree is an SXML tree34. The last two arguments are optional: if filename
is omitted or bound to the screen symbol, the result is just displayed, if encoding is
omitted, the output encoding is Latin-1. This function returns #t.
If bibliographical entries are given using XML syntax, according to our organisation, use
the following function to get the corresponding SXML tree:

(sxmlh-parse-xml-file filename)

32 Continuation-Passing Style. The last argument of a function using this technique is a continuation, it ex-

presses that this function’s future is the application of this continuation.
33 W.r.t. Scheme’s terminology, a thunk is a zero-argument function.
34 Our sxmlh-get-xml-syntax function adds blank nodes in order for the result to be displayed nicely, espe-

cially if it is an XML tree of bibliographical entries. Another function should be used if you would like XML

syntax, but as it is, without additional blank nodes.

40 40

40 40

mlbibtex and context: face-to-face > jean-michel hufflen

41

P
ro

ce
ss

U
pd

at
in

g

𝐸 0
n

ex
t

en
tr

y

𝑐 0

𝐸 1

𝑐 1

…

…

…𝐸 𝑛

𝑐 𝑛

Figure 7: How to chain entries’ processes.

41 41

41 41

contextgroup > context meeting 2015

42

or the #f value if the contents of the filename file is not well-formed. As other possible
imports, we plan to implement a parser for bibliographies expressed using the Refer
format. Last we also mention that MLBIBTEX includes a converter from JSON35 texts into
trees, although it seems to us that JSON is not really used for bibliographical entries.

3. Features of interest

In this section, we show some MLBIBTEX features of whose interest is not limited to
ConTEXt. Some may require additional development of this typesetting system, most
of them have not been implemented by BIBTEX or biber.

3.1 Type-checking

In general, when BIBTEX end-users try MLBIBTEX, they are very surprised because the
latter is less permissive than the former about values associated with fields throughout
.bib files. A very simple example is given by possible values of the YEAR field: by
default36 itmust be a number, different from zero37, written without the ‘+’ sign, negative
numbers are allowed, too. This point may be viewed as a drawback, since some .bib
files that can be read by BIBTEX without problem are unexploitable by MLBIBTEX. But
the question could be: ‘BIBTEX is not too permissive, is it?’ If end-users put something
other than number as a YEAR field, BIBTEX could sort entries because it only performs
lexicographic sorts, the YEAR field’s value being a substring of the sort key built.
So 3 is greater than 2016 if such an order is used. Such a comparison does not
occur in practice and could be easily solved by changing ‘3’ to ‘0003’. However, we
think that is bad technique: numerical sorts should be performed wherever they are
accurate, in particular for years and months. As a consequence, we have to check that
corresponding data are well-formed. Besides, this notion of data type can be noticed
within the biblatex package’s documentation. In addition, we personally experienced
.bib files where mistakes within AUTHOR fields were discovered several years (!) after
establishing the entry. Likewise, some mispelled optional fields such as EDITORS were
unremarked for a long time. On the contrary, MLBIBTEX performs type-checking when
it reads .bib files. If some fields are unknown, they are put at the end of an entry’s
internal form — so no information is lost — and a message warns users. This notion
of unknown field depends on the executable program you are using: if it is mlbibtex,
an additional field of the bib module is supposed to be unknown, if mlbibcontext is
called, such a field is known.
We mention that customising the type-checking function associated with a field is
quite easy. To be honest, such an operation should be done by an experienced Scheme
programmer, but is not really difficult.

3.2 Directives

MLBIBTEX allows directives at the beginning of a .bib file. Presently, there are two
directives, values associated with such a directive are bounded on the right by the
end-of-line character:

35 JavaScript Object Notation.
36 We are going back on this point in § 3.3.
37 Let us recall that this was no year zero, the year after 1 BC (Before Christi) was 1 AD (Anno Domini).

42 42

42 42

mlbibtex and context: face-to-face > jean-michel hufflen

43

%encoding = …
%prefix = …

An example of the %encoding directive has been given in Figure 1. This directive may
be useful for a human agent, and if the operating system difficultly determines the
encoding used. Let us make precise that even if several .bib files are to be processed,
each can specify its own encoding38.
The %prefix directive aims to solve name conflicts when there are namesake entries
within different .bib files. If all the entries of .bib files have different citation keys,
that is, if all the citation keys are unambiguous, this %prefix directive can be ignored.
Adding a prefix to an ambiguous key requires the \cite[…] command’s syntax to be
extended. We did that in a package for LATEX [15].

3.3 Inexact information

MLBIBTEX can also deal with inexact information, what is suitable for ancientworks. Let
us consider the following work:

Σοφοκλῆς: Ἀντιγόνη. 441 BC, approximately.

that is, Antigone, by Sophocles (495 BC–406 BC). Of course, this reference does not
denote a bibliographical item in the sense that it is not a published book. But a written
document may cite several modern translations of this work, so putting the original
title separately and accessing it by means of cross references may be interesting. This
tragedy premiere’s was presumably held in 441 BC, but this date is uncertain: some
historians believe that it took place before. Of course, the problem is to rank such an
entry when a bibliography is sorted.
Since the interest of such entries is purely historical, we chose to allow such inexact
information only if the -inexact option is enabled. So, such an inexact year may be
denoted by ‘ca-441’. Some digits at the end of an inexact year may also be replaced by
question marks — e.g., ‘-4??’. In this last case, an accurate bibliography style should
put down ’5th century BC’, so additional development may be required. We can also
express that an author is unknown by a pair of question marks — e.g., ‘?? and Alan
Braslau’ — such a pair just before a name means that the identity is merely surmised
— e.g., ‘?? Hans Hagen’. The order relations used by MLBIBTEX to sort years and
authors’ names have been enlarged in order to process such inexact information [17].

3.4 Interface with Scheme

In MLBIBTEX’s first publicly released version, it was possible to add new definitions
in Scheme, or redefine some functions by more accurate versions, but in practice,
this ability was only used by people able to recompile the whole program. In next
versions, programs derived from MLBIBTEX will look for initialisation files in users’ home
directories. More precisely, for Unix-based systems:

mlbibtex ⟸ ˜/.mlbibtex
mlbibcontext ⟸ ˜/.mlbibcontext

These Scheme source files could add new definitions or redefine some default con-
ventions. For example, the default input encoding for .bib files is Latin 1,unless an

38 However, the first release of MLBIBTEX’s new version will provide only byte-based encodings, that is, Latin-1,

Latin-2, UTF-8, but not UTF-16, which will be available later.

43 43

43 43

contextgroup > context meeting 2015

44

%encoding directive specifies another. If you would like this two default encoding to
be UTF-8, just put the following Scheme expression in your initialisation file:

((encodings-pv 'set-default-for-4-files)

'utf-8)

This feature can also be used to introduce new sort procedures, as described in [18]
and bind them to natural languages. For example, MLBIBTEX’s library provides two
lexicographic orders for the Dutch language: <dutch-basic?, by default, and <dutch-
ijs?. To associate the latter with this natural language, run:

(c-language->order-relation "dutch"
<dutch-ijs?)

To end up with this interface, let us mention that MLBIBTEX’s library includes functions
generating unambiguous labels when alpha styles are used. For example:

(generate-newly s1 s2 y)

associates the s1 string with the SXML tree y if s1 is unambiguous, and uses s2 to enrich
s1 otherwise. In any case, the string associated with y is returned. Let us consider that
only the y1 sxml tree is the only entry whose author is Taco Hoekwater, whereas the
author of the SXML trees y2 and y3 is Willi Egger. The year of these three entries is
2015. The results of three successive calls of this generate-newly is given in Table 4.
The three other sessions are analogous, but show the second argument’s interest.

4. Executable programs

When MLBIBTEX is installed, Scheme definitions are compiled and executable files
are built. Among them, we have already mentioned the programs mlbibtex and
mlbiblatex. Hereafter we give more details about the programs mlbibcontext and
mlbibtex2xml. Let us mention that all these programs can be invoked with the option
-h or --help, in which case a short description of arguments and options is displayed.
Hereafter we use square brackets for optional parts and ellipses for repetitions. The
mlbibcontext program is to be invoked as follows:

mlbibcontext [-inexact] job-name[.aux] \
key-expr lg-code

where the -inexact option allows the use of inexact information (cf. § 3.3), all the other
arguments are strings:

• job-name is a pathname for an .aux file, as in BIBTEX, the .aux suffix being im-
plicit;

• key-expr gives successive sort keys, according to the pattern
(<l>[!][\[<value>\]])…:

44 44

44 44

mlbibtex and context: face-to-face > jean-michel hufflen

45

(generate-newly "Hoekwater 2015" "a" y1);
⟹"Hoekwater 2015"

(generate-newly "Egger 2015" "a" y2);
⟹"Egger 2015"

(generate-newly "Egger 2015" "a" y3);
⟹"Egger 2015a"

`a’ (resp. `A’) means
`numbering with lower-
case (resp. upper-case)
letters.

(generate-newly "Hoekwater 2015" "+a" y1);
⟹"Hoekwater 2015"

(generate-newly "Egger 2015" "+a" y2);
⟹"Egger 2015a"

(generate-newly "Egger 2015" "+a" y3);
⟹"Egger 2015b"

`+’ at the beginning of
the control argument
causes the first argument
not to be used with-
out suffix if this string
is shared.

(generate-newly "Egger 2015" "-1" y2);
⟹"Egger 2015"

(generate-newly "Egger 2015" "-1" y3);
⟹"Egger 2015-1"

(generate-newly "Hoekwater 2015" "-1" y1);
⟹"Hoekwater 2015"

`1’ means `numbering
with Arabic digits’. Let
us remark that the `+’
character is not put at
the control argument’s
beginning.

(generate-newly "Hoekwater 2015" "+-i" y1);
⟹"Hoekwater 2015"

(generate-newly "Egger 2015" "+-i" y2);
⟹"Egger 2015-i"

(generate-newly "Egger 2015" "+-i" y3);
⟹"Egger 2015-ii"

`i’ (resp. ’I’) means
`numbering with lower-
case (resp. upper-case)
Roman numerals’. All the
other characters are put
into the suffix.

Table 4: Four examples of sessions using our generate-newly function.

• <l> is a letter among ‘m’ for ‘Month’ , ‘n’ for ‘Name’ (person name as an
author or editor), ‘t’ for ‘Title’, ‘y’ for ‘Year’, all the other signs are ignored;

• if ‘!’ is present, the corresponding sort is performed using descending or-
der;

• a value surrounded by square brackets (‘\[<value>\]’) is a default value to
be used whenever an optional sort key does not apply.

For example, ‘y!m![0]’ denotes a sort by reverse chronological order, items
without month information being ranked after item with expressed month for
the same year39; there is no default order relation40: the list of bibliographical
items is left unsorted unless a sort is specified41;

• lg-code is the ISO code of the document’s main language.

Previous versions of this program included a fourth argument for the output encoding,
no longer allowed since ConTEXt’s recent versions deal with UTF-8.

39 Let us recall that the @MONTH field is optional.
40 The default order relation used by both BIBTEX and biber would be specified by ‘ynt’.
41 Dealing with more elaborate sort procedures is possible, but needs to use Scheme functions.

45 45

45 45

contextgroup > context meeting 2015

46

The mlbibtex2xml program allows .bib files to be converted into XML files and can be
run as follows:

mlbibtex2xml [-inexact] [<dest>] \
f0[.bib] f1[.bib] …

where the -inexact option allows the use of inexact information, f0[.bib],
f1[.bib], … are .bib files, the .bib suffix being implicit. The <dest> information is
organised as follows:

<dest> ::
(-screen | -o output) [-encoding encoding]

If the -screen option is used, the result is displayed at the screen, otherwise it is written
into a file. If the -o option is used, output gives the output file name, otherwise, this
name defaults to f0-mlbiblio.xml, even if several .bib files are processed. The output
encoding defaults to Latin-1.

5. Discussion and conclusion

If we examine the evolution of the typesetting systems built out of TEX, we may notice
that use of the Lua programming language allows tasks related to actual programming
to be put into action by means of an ‘actual’ programming language, whereas engines
based on TEX remain wonderful tools for typesetting texts. In other words, programs
such as LuaLATEX or ConTEXt format texts and delegate some tasks to Lua functions.
Even if programming a sort procedure using TEX’s language is possible, implementing
the same operation is obviously easier using Lua. A comparison between BIBTEX’s
modus operandi and MLBIBTEX’s shows the same trend: some operations more related
to ‘actual’ programming — e.g., multi-criteria sorting algorithms — can be more easily
implemented in MLBIBTEX by means of Scheme definitions, in comparison with the
expressive power of the language of BIBTEX’s .bst files.
Within this framework, which advantages are provided by a functional programming
language in general and by Scheme in particular? In such a language, we can easily
write an expression such as:

(lambda (f2) (f2 2 1))

which may be viewed as follows: a procedure — denoted by f2 — will be applied
to the numbers 1 and 2, but presently, we do not know which procedure. That is,
data are known, but the way to process them is not. If we decide to perform an
addition (resp. subtraction), just present + (resp. -). There is something equivalent
when bibliographical references are built from entries: resources are known, they are
successive bibliographical items; the operations performed by a bibliography style
depend on typographical rules, they may also depend on natural languages, e.g., when
a month name is to be displayed. In any case, a bibliography style may be abstracted by
a function, even if this function is itself built from many parameters. We have followed
such a guide-line when MLBIBTEX’s direct styles were developed.

A debatable point is given by the syntactic extensions to .bib files’ format. The main
criticism is that end-users cannot be compatible with the original format, they cannot
revert to ‘old’ BIBTEX, either, if using these extensions42. That may be needed when

46 46

46 46

mlbibtex and context: face-to-face > jean-michel hufflen

47

users put the final version of an article, processed automatically by LATEX and BIBTEX
on journals’ Web sites. However, we think that the .bib format is too restrictive. As
mentioned in § 1.1, the only way to express some cases is the use of dummy LATEX
commands. Even if we can understand that at a time when source LATEX files were
BIBTEX’s only target, it seems to us that putting:

AUTHOR = {{\relax Cl}{ive Eric} Cussler}

in order for this name to be correctly abbreviated by ‘Cl. Cussler’ is nothing less than
a dirty trick! A compatible solution might be the addition of new comma-separated
subfields, something like:

Cussler,, Clive Eric, Cl.

— the Junior part being empty — but unfortunately such syntax is rejected by BIBTEX.
Broadly speaking, our extensions are debatable, but we think that keeping this .bib
format as it is will leave many problems unsolved. Besides, many graphical interfaces
now exist in order to fill in the information of a BIBTEX entry. End-users could
interactively enter the components of a person name, the tool being in charge of
assembling these components according to a new syntax with more expressive power.
On another point, it seems to us to be regretable that each new tool has developed
its own extensions. For example, the biblatex package uses a PAGETOTAL field for
the total number of the pages of a book, whereas this information is often known as a
TOTALPAGES field, in particular by the jurabib package. Many similar examples exist.
Maybe we can consider that we are living an experimentation period, which will result
in new bibliography processors and new formats for bibliographical entries. Within
this framework, developing a program that would allow ConTEXt to take advantage of
BIBTEX’s bibliography database files is an interesting challenge for us.

As last words, let us say that MLBIBTEX has its advantages and drawbacks, but it is ready
to cooperate with ConTEXt.

Acknowledgements
My first thanks are for Alan Braslau, who was waiting for this article for a long time
and who helped me a lot, when I was just a beginner for some advanced features of
ConTEXt. I am also grateful to Hans Hagen and Willi Egger for nice assistance.

References
[1] O. Patashnik, BIBTEXIng (1988).

[2] F. Mittelbach, M. Goossens, J. Braams, D. Carlisle, C. A. Rowley, C. Detig, and
J. Schrod, The LATEX Companion, 2 ed. (Addison-Wesley Publishing Company,
2004).

[3] CONTEXTGARDEN, Bibliographies in MkII (2012).

[4] O. Patashnik, Designing BIBTEX Styles (1988).

42 The biblatex package has the same drawback: if the DATE field (cf. § 1.4) is used rather than the standard

fields YEAR and MONTH, it will be unrecognised by BIBTEX’s standard bibliography styles.

47 47

47 47

contextgroup > context meeting 2015

48

[5] P. Lehman, P. Kime, A. Boruvka, and J. Wright, The biblatex Package. Program-
mable Bibliographies and Citations. Version 2.9a (2014).

[6] P. Kime and F. Charette, Biber. A Backend Bibliography Processor for biblatex.
Version biber 1.9 (biblatex 2.9) (2014).

[7] J.-M. Hufflen, From MLBIBTEX 1.3 to 1.4, In T. Przechlewski, K. Berry, B. Jack-
owski, and L. B. Ludwichowski (Eds.) Various Faces of Typography. Proc. Ba-
choTEX 2015 conference (2015).

[8] J.-M. Hufflen, Using MLBIBTEX to Populate Open Archives, In T. Przechlewski, K.
Berry, G. Gic-Grusza, E. Kolsar, and L. B. Ludwichowski (Eds.) Typographers and
Programmers: Mutual Inspirations. Proc. BachoTEX 2010 Conference (2010).

[9] J.-M. Hufflen, Demonstration of the mlbibcontext Program, In Proc. 6th Con-
TEXt Meeting & EuroTEX 2012 (2012).

[10] R. Ierusalimschy, Programming in Lua, 2 ed. (Lua.org, 2006).

[11] J.-M. Hufflen, A Comparative Study of Methods for Bibliographies, TUGboat 32
(2011). (Proc. TUG 2011 conference, Trivandrum, India)

[12] J.-M. Hufflen, Managing Languages within MLBIBTEX, TUGboat 30 (2009).

[13] J.-M. Hufflen, Names in BIBTEX and MLBIBTEX, TUGboat 27 (2006). (TUG 2006
proceedings, Marrakesh, Morocco)

[14] J.-M. Hufflen, MLBIBTEX’s Version 1.3, TUGboat 24 (2003).

[15] J.-M. Hufflen, Managing Name Conflicts and Aliasing with MLBIBTEX, In T. Przech-
lewski, K. Berry, B. Jackowski, and L. B. Ludwichowski (Eds.) What Can Typogra-
phy Gain from Electronic Media? Proc. BachoTEX 2014 conference (2014).

[16] TUG Working Group on a TEX Directory Structure, A Directory Structure for TEX
Files. Version 0.9995 (TUG Working Group on a TEX Directory Structure, 1998).
(CTAN: tex/archive/tds/standard/tds-0.9995/tds.dvi)

[17] J.-M. Hufflen, Dealing with Ancient Works in Bibliographies,ArsTEXnica 18 (2014).
(In Proc. GUIT meeting 2014)

[18] J.-M. Hufflen, MLBIBTEX And Its New Extensions, In Proc. 6th ConTEXt Meeting
& EuroTEX 2012 (2012).

48 48

48 48

