
the new font loader > hans hagen

23

The (New) Font Loader
Hans Hagen

Recently, ConTEXt switched to a new font loader written from scratch in Lua. The new
loader is faster on some aspects and slower on others, and uses a little less memory.
The new loader gives more efficient tables, allows more programming hooks, and has a
bit more analysis. In theory the processing of text should be somewhat faster especially
for complex fonts with many lookups.

How TEX sees a font
TEX sees fonts as an abstraction: the shape
doesn’t really matter. The engine works with
rectangular blobs with a certain height, depth
and width. When needed an extra kern can
be added after such a blob: italic correction.
Between the blobs can be kerns and that’s about
it. In the end there is a list of glyph and kern
nodes. In the process (traditional) TEX can com-
bine a sequence of characters into one glyph,
called a ligature.
Math is a bit more complicated because there
a glyph can have larger sizes and eventually be
mapped onto a constructed glyph. The charac-
ters (glyphs) in traditional TEX math fonts can
have peculiar dimensions that act as signals
to do something special. Already early in the
development of TEX, virtual fonts were added,
but there is nothing special about them: in the
backend, when the font is written to file, virtual
character definitions will be resolved, but till
then for TEX they are just blobs.
The relationship between hyphenation and fonts
in traditional TEX is just a side effect of the
implementation. In LuaTEX the process of hy-
phenation, ligaturing and kerning is separated.
So, in a traditional TEX font, with the suffix tfm,
we find all that the engine needs to know per
glyph: height, depth, width, italic correction,
kerning between specific shapes (take VA), lig-
ature building directives, a next size pointer for
a math character, an extensible specification
when no larger value is present. The font also
comes with a set of text and math parameters
that relate to for instance spacing.

Later extensions
The pdfTEX engine added a bit more information
to glyphs, but that was never part of the font
file: it got defined runtime in the macro pack-
age. Examples are left and right protruding and
expansion factors.
In LuaTEX more got added, like tounicode (for
cut’n’paste from the result) and the index in
the font resource (file). For math characters
we added: top accent, bot accent, more de-
tailed extensibles, vertical and horizontal vari-
ants, math kerns and a math specific italic cor-
rection. The number of parameters became
larger, for instance font related names, and a
math constants table were added. The virtual
font model is opened up and one can construct
them in Lua.

Font data
In ConTEXt all fonts are treated equal: they
are turned into wide fonts using an UNICODE
encoding. This means that when a TYPE1 font
has more that 256 characters all of them can
be accessed. However, the data model used is
based on OPENTYPE fonts.
The OPENTYPE format evolved out of competing
formats by Apple, MICROSOFT and Adobe. Cur-
rently we have two flavours that can normally be
recognized by suffix: ttf and otf (we dropped
dfonts). The main differences between the
two formats are bounding box info, global kern
tables, cubic vs quadratic curves. There can be
multiple sub fonts combined in ttc files (font
collections).

23 23

23 23



contextgroup > context meeting 2015

24

The only useable reference is on the MICROSOFT
website and the ISO MPEG standard is more or
less a bunch of ugly rendered webpages. A bit of
trial and error helps to understand and identify
fuzzy aspects. And of course we had already
done a lot with processing features so in the end
writing a new loader in Lua was quite doable.
An OPENTYPE font is mostly tables with lots of
subtables. There are required table describing
properties, dimensions, TRUETYPE or POSTSCRIPT
outlines, but also optional ones, that for instance
define typographic features. The typographic
tables specify transformations to apply (gdef,
gsub and gpos). When a font is loaded, all this
data is converted to a so called TFM table, meant
to pass the needed (blob related) information,
while at the same time we keep feature related
information around for handling at the Lua end.

Loading font data
Till mid 2015 the built-in FONTFORGE loader li-
brary was used by default. This approach has the
advantage that we get a view similar to the one
in that editor. In ConTEXt the code for this loader
and its related processor is now replaced by a
pure Lua loader. The feature handler is similar
but evolved a bit. One can (for now) fall back on
the old loader. The new loader is still generic so
it can be used in plain TEX and LATEX. However, in
those macro packages a different name resolver
is used and KPSE locates the files.
There are several ways to specify a font in
ConTEXt. When the requested name gets pre-
fixed by file: the file system is consulted.
When name: is used the font database is used.
The spec: prefix tries to locate a font by prop-
erties like its weight and width. The virtual:
and lua: methods are kind of special and not
that interesting for users.
When a font gets loaded in base mode, TEX
will do the ligaturing and kerning (if enabled),
which is quite efficient. In node mode all that
is delegated to Lua. In auto mode ConTEXt will
decide what mode can be used. Internally there
is also a dynamicmode but it’s just a special kind
of node mode.
Internally we use UNICODE instead of indices so
we need to we need to identify cq. filter the right

UNICODE information from the glyph names and
applied features. We need to do that anyway
because we want to pass the tounicode infor-
mation to the resulting file too. As we need
height and depth we do need to calculate the
boundingbox of POSTSCRIPT outlines so a ded-
icated parser for shapes related information is
implemented too. Both actions are part of the
loader.
Because loading and preparation takes time we
cache fonts. It also saves memory as we pack
data as much as possible without violating use-
ability. This means that when a font is changed
or new, or when the loader has been updated,
the requested font is loaded, converted and then
written to cache. In a next run that cached copy
is used.
The TYPE1 font loader already was written in Lua
but is now producing an OPENTYPE compatible
output which means that we can also control
and add features. This was already possible but
it still was a base mode font, while now we can
use node mode for TYPE1. We load the relevant
information from the afm and pfb file.
There is a built-in loader for tfm, ofm, vf and
ovf files. In 2016 loading of TFM files has been
extended in such away that we control them like
TYPE1 and OPENTYPE fonts: we can control fea-
tures and add new ones. Encoding and filename
mapping can be independent of enc and map
files because we can consult the pfb file (unless
we have a bitmap font).

Preparing for use
After a font is loaded glyph substitution and
positioning gets initialized. For that the right
processors get enabled and hashes get pre-
pared. If needed a state processor is enabled
that sets glyph properties needed for some fea-
tures (think of initials for Arabic). For some
scripts, like Devanagari additional (dedicated)
features and handlers are injected in the font
processor sequence.
In addition to OPENTYPE font features we can also
implement extra ones and there are quite some
already. Think of tlig and trep, but protrusion,
expansion, extend and slant are also features.
Some only result in initializations, some demand

24 24

24 24



the new font loader > hans hagen

25

processors to kick in. In the new loader we
dropped fea files but compensated that by ex-
tending the Lua based variant (and more can be
added).
There are numerous hooks before, during and
after loading of a font so that we can manipulate
the (intermediate) results. Think of adapting di-
mensions, fixing glyph properties, adding virtual
characters, replacing (basemode) characters by
others etc.
One reason for writing a loader in Lua is that
we stay close to the raw data. That way we
can for instance access the shapes. In fact such
access was the reason to look into it in the first
place. We now also don’t need to compensate
for heuristics in the built- loader, which acci-
dentally is quite good in dealing with bad fonts
(not that we found many but it might have been
important in the past). The specifications are
simply better (and opener) now.
For feature processing we use an internal format
different from the view that the old loader gives
and the new loader directly produces a more
useable data structure. So, we got rid of some
preparations. The first time caching saves a bit
time here which compensates the slow down
introduced by using Lua instead of C. By the way,
identifying fonts for the name database is way
faster now.

Processing features
The processing of features in node mode comes
after hyphenation. First we identify what modes
are needed. If action is needed, we normalize
the node list a bit (mostly discretionaries) and
scan for UNICODE variants. For each font found
we delegate the handling to TEX (base mode)
or Lua(node mode). In node mode we run over
the glyphs for each feature (step). For some
fonts that can be a lot of passes! Stepwise we
replace one or more glyphs by one, more or less
other glyphs. Sometimes we need to look at the
preceding and following glyphs or spaces. After
substitutions, normally positioning takes place.
When all is done, a so called injection phase
is entered: based on the positioning outcomes,
kerns left and right of a glyph are injected.
Glyphs are shifted up or down when needed.

Marks are anchored and cursives get applied.
It must be noted that efficient contextual analy-
sis is non-trivial, especially because we also
need to look inside discretionary nodes: the pre,
post and replace sequences need to be dealt
with too. At this moment performance is quite
okay but it took s a bit of experimenting to come
this far (this effort was done with Kai Eigner
who has lots of test cases). There is no real
limit in extensions and it’s not too hard to inject
experimental code. And of course users can add
their own features.
When we process a font, we basically only need
to support a set of standard manipulations. But
checking and tracing can be a bit of a hassle
as there is no real consistent approach in using
basic features: single, one-to-multiple, multi-
ple-to-one and many-to-many replacements.
Often in ligature building there look ahead and/
or back involved. Consistent families like Latin
Modern and Gyre could share common struc-
tures and logic but otherwise there is much
diversity around: turning an f and i into a lig-
ature can be done in many ways: in OPENTYPE
a ligature is not always a ligature but can also
be achieved by kerning combined with selective
replacement of shapes.

Math support
The OPENTYPE math specification stays close to
TEX but has extensions and more control (see
articles & presentations by Ulrik Vieth). We load
the data in a format that is rather close the
internal structures that TEX needs. In ConTEXt
we use(d) virtual UNICODE fonts, awaiting proper
native UNICODE fonts, but in the meantime we
have these. Some of their metrics are not yet
perfect but eventually we will get there.
Of course math character mapping and special
element handling remains macro package de-
pendent but that is unrelated to the loader. In
ConTEXt we use information from the font when
needed, and it’s one of the reasons to have the
data always available at the Lua end, also after
passing a TFM table to TEX.
In the engine we use different code paths for 8
bit fonts with traditional metrics and OPENTYPE
fonts. Heuristics have been replaced by what

25 25

25 25



contextgroup > context meeting 2015

26

the standard tells. Already from the start LuaTEX
provides much control over spacing and re-
cently a bit more control over rendering has
been added.

Summary
Writing a Lua loader started out as experiment
for loading outlines in METAFUN. The loader
avoids the conversion to optimal structures for
handling by directly converting the raw data
into a suitable format. We can hook in better
heuristics because the data mostly untouched.
It all fits in the wish for maximum flexibility
(a next stage ConTEXt) and it’s rather trivial to
extend and adapt without hard coding. The per-
formance can be a bit less on initial loading (pre-
cache) but there is a bit of room to improve this.
The loader is much more efficient in identifying
fonts (no real issue in ConTEXt). In practice most
fonts behave ok (no recovery needed) but there
are some sloppy fonts around but we do our best
to handle them too.
In the process the feature handlers have been
improved and optimized. We will improve han-
dling of border cases (within the constraints of
performance). Also a few more hooks for plug-
ins might be provided. The type one pfb reader
will be extended to provide outlines (not com-
plex but needed for METAFUN). We keep playing
with extra new features and virtual fonts.
A recent (2016) extension has been color fonts.
The needed tables are loaded, and the relevant
overlays and graphics are dealt with. This kind
of extensions are possible without patching the
engine.

Credits
All this code started showing up during the Ori-
ental TEX project, where we used one of the
most complex Arabic fonts around: Husayni.
This font can also benefit from a line optimizer
where features kick in dynamically. Idris Samawi
Hamid is the key person for testing this and he
also provides Husayni.
Kai Eigner and Ivo Geradts did lots of tests with

Latin, Arabic, Greek and Devanagari, using rare,
unusual, complex and sometimes creepy fonts.
They actively participated in helping to make
the code better, and challenged improvements
of the discretionary handling.
Of course we need to mention testers from the
very start. For instance, by using betas in dead-
line critital book production for Thomas Schmitz
made sure we patch fast.
Already in an early state Philipp Gesang system-
atically took over binding the generic code to
LATEX as a follow up on work by Elie Roux and
Khaled Hosny. Being present on the ConTEXt
mailing list Ulrike Fischer reports on LATEX issues
and provides proper tests. Thanks to all those
testers bugs could be fixed and improvements
be made.
Of course we need to credit Hartmut Henkel for
the initial cleaning up of expansion and protru-
sion. Without the original loader, written by Taco
Hoekwater on top of non-trivial FONTFORGE code
we would not be where we are now. For close
to a decade we needed it to get going. The
development of LuaTEX could not have taken
place without us discussing and experimenting
man-years. The last years Luigi Scarso has
patiently contributed in testing and managing
my patches.
Then we need to thank Boguslaw Jackowski and
friends for coming up with the OPENTYPE Latin
Modern and Gyre fonts. Dohyun Kim and Akira
Kakuto test and suggest on CJK font support,
which has its own demands (these fonts are
huge).
Mojca Miklavec is always present for taking care
of the distributions, managing us, well, basically
everything. Who else.
Of course without my collegue Ton Otten there
would be no ConTEXt, as one can only do this
kind of work when it gets supported in a stimu-
lating environment. He’s also a pretty good and
patient tester.
Last, so that it stands out well, I mention Wolf-
gang Schuster. He knows and tests every detail
of ConTEXt and is responsible for the selectfont
mechanism, an alternative way to load fonts at
the TEX end. Where would we be without him!

26 26

26 26


